Attitude Tracking Control of an Airborne Wind Energy System

  • Haocheng Li
  • David J. Olinger
  • Michael A. Demetriou
Chapter
Part of the Green Energy and Technology book series (GREEN)

Abstract

We consider attitude tracking control for an airborne wind energy system, which generates electricity through a turbine mounted on a tethered glider flying at higher altitude than conventional wind turbines. The airborne wind energy system, which efficiently harnesses energy due to high-speed crosswind motion, consists of a rigid glider (also referred as a rigid kite) and constant length tether connected to the ground. Full aircraft dynamics are modeled including a rotational equation of motion. The resulting dynamical system is an under-actuated mechanical system with only rotational control inputs. We first propose an attitude tracking theorem that provides desired tracking signals for rotational motion. A feedback linearization controller and a real time differentiator are designed and implemented on the full glider dynamics to try to achieve the desired angle of attack and sideslip angle. A comparison study is conducted between a Lyapunov-based and attitude tracking control for the same baseline conditions for the airborne wind energy system.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anderson, J. D.: Fundamentals of Aerodynamics. 5th ed. McGraw-Hill (2014)Google Scholar
  2. 2.
    Baayen, J. H., Ockels, W. J.: Tracking control with adaption of kites. IET Control Theory and Applications 6(2), 182–191 (2012).  https://doi.org/10.1049/iet-cta.2011.0037
  3. 3.
    Bosch, A., Schmehl, R., Tiso, P., Rixen, D.: Dynamic nonlinear aeroelastic model of a kite for power generation. AIAA Journal of Guidance, Control and Dynamics 37(5), 1426–1436 (2014).  https://doi.org/10.2514/1.G000545
  4. 4.
    Bosch, A., Schmehl, R., Tiso, P., Rixen, D.: Nonlinear Aeroelasticity, Flight Dynamics and Control of a Flexible Membrane Traction Kite. In: Ahrens, U., Diehl, M., Schmehl, R. (eds.) Airborne Wind Energy, Green Energy and Technology, Chap. 17, pp. 307–323. Springer, Berlin Heidelberg (2013).  https://doi.org/10.1007/978-3-642-39965-7_17
  5. 5.
    Breukels, J., Schmehl, R., Ockels, W.: Aeroelastic Simulation of Flexible Membrane Wings based on Multibody System Dynamics. In: Ahrens, U., Diehl, M., Schmehl, R. (eds.) Airborne Wind Energy, Green Energy and Technology, Chap. 16, pp. 287–305. Springer, Berlin Heidelberg (2013).  https://doi.org/10.1007/978-3-642-39965-7_16
  6. 6.
    Canale, M., Fagiano, L., Milanese, M.: High Altitude Wind Energy Generation Using Controlled Power Kites. IEEE Transactions on Control Systems Technology 18(2), 279–293 (2010).  https://doi.org/10.1109/TCST.2009.2017933
  7. 7.
    Diehl, M.: Airborne Wind Energy: Basic Concepts and Physical Foundations. In: Ahrens, U., Diehl, M., Schmehl, R. (eds.) Airborne Wind Energy, Green Energy and Technology, Chap. 1, pp. 3–22. Springer, Berlin Heidelberg (2013).  https://doi.org/10.1007/978-3-642-39965-7_1
  8. 8.
    Erhard, M., Strauch, H.: Control of Towing Kites for Seagoing Vessels. IEEE Transactions on Control Systems Technology 21(5), 1629–1640 (2013).  https://doi.org/10.1109/TCST.2012.2221093
  9. 9.
    Etkin, B., Reid, L. D.: Dynamics of Flight: Stability and Control. John Wiley & Sons, New York (1996)Google Scholar
  10. 10.
    Fagiano, L., Milanese, M., Piga, D.: Optimization of airborne wind energy generators. International Journal of Robust and Nonlinear Control 22(18), 2055–2083 (2011).  https://doi.org/10.1002/rnc.1808
  11. 11.
    Fagiano, L., Zgraggen, A. U., Morari, M., Khammash, M.: Automatic crosswind flight of tethered wings for airborne wind energy:modeling, control design and experimental results. IEEE Transactions on Control System Technology 22(4), 1433–1447 (2014).  https://doi.org/10.1109/TCST.2013.2279592
  12. 12.
    Fagiano, L., Huynh, K., Bamieh, B., Khammash, M.: On sensor fusion for airborne wind energy systems. IEEE Transactions on Control Systems Technology 22(3), 930–943 (2014).  https://doi.org/10.1109/TCST.2013.2269865
  13. 13.
    Fagiano, L., Milanese, M., Razza, V., Bonansone, M.: High AltitudeWind Energy for Sustainable Marine Transportation. IEEE Transactions on Intelligent Trasportation Systems 13(2), 781–791 (2012).  https://doi.org/10.1109/TITS.2011.2180715
  14. 14.
    Fechner, U., Vlugt, R. van der, Schreuder, E., Schmehl, R.: Dynamic Model of a Pumping Kite Power System. Renewable Energy (2015).  https://doi.org/10.1016/j.renene.2015.04.028. arXiv:1406.6218 [cs.SY]
  15. 15.
    Groot, S. G. C. de, Breukels, J., Schmehl, R., Ockels, W. J.: Modeling Kite Flight Dynamics Using a Multibody Reduction Approach. AIAA Journal of Guidance, Control and Dynamics 34(6), 1671–1682 (2011).  https://doi.org/10.2514/1.52686
  16. 16.
    Gros, S., Zanon, M., Diehl, M.: A relaxation strategy for the optimization of Airborne Wind Energy systems. In: Proceedings of the 2013 European Control Conference (ECC), pp. 1011–1016, Zurich, Switzerland, 17–19 July 2013Google Scholar
  17. 17.
    Gros, S., Zanon, M., Diehl, M.: Control of Airborne Wind Energy Systems Based on Nonlinear Model Predictive Control & Moving Horizon Estimation. In: Proceedings of the European Control Conference (ECC13), Zurich, Switzerland, 17–19 July 2013Google Scholar
  18. 18.
    Gros, S., Diehl, M.: Modeling of Airborne Wind Energy Systems in Natural Coordinates. In: Ahrens, U., Diehl, M., Schmehl, R. (eds.) Airborne Wind Energy, Green Energy and Technology, Chap. 10, pp. 181–203. Springer, Berlin Heidelberg (2013).  https://doi.org/10.1007/978-3-642-39965-7_10
  19. 19.
    Ilzhöfer, A., Houska, B., Diehl, M.: Nonlinear MPC of kites under varying wind conditions for a new class of large-scale wind power generators. International Journal of Robust and Nonlinear Control 17(17), 1590–1599 (2007).  https://doi.org/10.1002/rnc.1210
  20. 20.
    Jehle, C., Schmehl, R.: Applied Tracking Control for Kite Power Systems. AIAA Journal of Guidance, Control, and Dynamics 37(4), 1211–1222 (2014).  https://doi.org/10.2514/1.62380
  21. 21.
    Khalil, H.: Nonlinear Systems. 3rd ed. Prentice Hall, Upper Saddle River, NJ (2001)Google Scholar
  22. 22.
    Li, H., Olinger, D. J., Demetriou, M. A.: Attitude Tracking Control of a GroundGen Airborne Wind Energy System. In: Proceedings of the 2016 American Control Conference, Boston, MA, USA, 6–8 July 2016.  https://doi.org/10.1109/ACC.2016.7525565
  23. 23.
    Li, H., Olinger, D. J., Demetriou, M. A.: Attitude Tracking Control of an Airborne Wind Energy System. In: Proceedings of the 2015 European Control Conference, Linz, Austria, 15–17 July 2015.  https://doi.org/10.1109/ECC.2015.7330752
  24. 24.
    Li, H., Olinger, D. J., Demetriou, M. A.: Control of a Tethered Undersea Kite Energy System Using a Six Degree of Freedom Model. In: Proceedings of the 2015 IEEE International Conference on Decision and Control (CDC), Osaka, Japan, 15–18 Dec 2015.  https://doi.org/10.1109/CDC.2015.7402309
  25. 25.
    Li, H., Olinger, D. J., Demetriou, M. A.: Control of an Airborne Wind Energy System using an Aircraft Dynamics Model. In: Proceedings of the 2015 American Control Conference, Chicago, IL, USA, 1–3 July 2015.  https://doi.org/10.1109/ACC.2015.7171090
  26. 26.
    Manwell, J. F., McGowan, J. G., Rogers, A. L.: Wind Energy Explained: Theory, Design and Application. 2nd ed. John Wiley & Sons, Ltd., Chichester (2009).  https://doi.org/10.1002/9781119994367
  27. 27.
    Olinger, D., Wang, Y.: Hydrokinetic energy harvesting using tethered undersea kites. Journal of Renewable and Sustainable Energy 7(4), 043114 (2015).  https://doi.org/10.1063/1.4926769
  28. 28.
    Williams, P., Lansdorp, B., Ockels, W. J.: Nonlinear Control and Estimation of a Tethered Kite in Changing Wind Conditions. AIAA Journal of Guidance, Control and Dynamics 31(3) (2008).  https://doi.org/10.2514/1.31604
  29. 29.
    Williams, P., Lansdorp, B., Ockels, W.: Optimal Crosswind Towing and Power Generation with Tethered Kites. AIAA Journal of Guidance, Control, and Dynamics 31(1), 81–93 (2008).  https://doi.org/10.2514/1.30089
  30. 30.
    Zanon, M., Gros, S., Andersson, J., Diehl, M.: Airborne Wind Energy Based on Dual Airfoils. IEEE Transactions on Control Systems Technology 21(4), 1215–1222 (2013).  https://doi.org/10.1109/TCST.2013.2257781
  31. 31.
    Zanon, M., Horn, G., Gros, S., Diehl, M.: Control of Dual-Airfoil Airborne Wind Energy systems based on nonlinear MPC and MHE. In: European Control Conference, pp. 1801–1806, Strasbourg, France, 17–19 July 2013.  https://doi.org/10.1109/ECC.2014.6862238
  32. 32.
    Zgraggen, A. U., Fagiano, L., Morari, M.: Automatic Retraction Phase of Airborne Wind Energy Systems. Proceedings of the 19th IFAC World Congress 47(3), 5826–5831 (2014).  https://doi.org/10.3182/20140824-6-ZA-1003.00624
  33. 33.
    Zgraggen, A. U., Fagiano, L., Morari, M.: On Modeling and Control of the Retraction Phase for Airborne Wind Energy Systems. In: Proceedings of the 53rd IEEE Conference on Decision and Control, pp. 5686–5691, Los Angeles, CA, USA, 15–17 Dec 2014.  https://doi.org/10.1109/CDC.2014.7040279
  34. 34.
    Zgraggen, A. U., Fagiano, L., Morari, M.: Real-Time Optimization and Adaptation of the Crosswind Flight of Tethered Wings for Airborne Wind Energy. IEEE Transactions on Control Systems Technology 23(2), 434–448 (2015).  https://doi.org/10.1109/TCST.2014.2332537

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Haocheng Li
    • 1
  • David J. Olinger
    • 1
  • Michael A. Demetriou
    • 1
  1. 1.Aerospace Engineering ProgramWorcester Polytechnic InstituteWorcesterUSA

Personalised recommendations