Skip to main content

Emergence and Economic Dimension of Airborne Wind Energy

  • Chapter
  • First Online:
Airborne Wind Energy

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

Airborne wind energy has the potential to evolve into a fundamental cornerstone of sustainable electricity generation. In this contextual analysis we discuss why this technology is emerging at this very moment in time and why it has the potential to disrupt the wind energy economy in the short term and the global energy markets in the longer term. We provide an order-of-magnitude estimate of the economic dimension of this scenario. Following this introductory chapter, the current technology status, principles and challenges of designing, building and flying an airborne wind energy device will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 89.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 4C Offshore Ltd: Global wind speed rankings of offshore wind farms. http://www.4coffshore.com/windfarms/windspeeds.aspx. Accessed 18 Jan 2016

  2. Afams, C., Thornhill, J.: Gates to double investment in renewable energy projects. Financial Times, 25 June 2015. http://on.ft.com/1U2Btc2

  3. Ahrens, U., Diehl, M., Schmehl, R. (eds.): Airborne Wind Energy. Green Energy and Technology. Springer, Berlin Heidelberg (2013). https://doi.org/10.1007/978-3-642-39965-7

  4. Ahrens, U., Pieper, B., Töpfer, C.: Combining Kites and Rail Technology into a Traction-Based Airborne Wind Energy Plant. In: Ahrens, U., Diehl, M., Schmehl, R. (eds.) Airborne Wind Energy, Green Energy and Technology, Chap. 25, pp. 437–441. Springer, Berlin Heidelberg (2013). https://doi.org/10.1007/978-3-642-39965-7_25

  5. Allen, J., Walsh, B.: Enhanced oil spill surveillance, detection and monitoring through the applied technology of unmanned air systems. International Oil Spill Conference Proceedings 2008(1), 113–120 (2008). https://doi.org/10.7901/2169-3358-2008-1-113

  6. Archer, C. L., Caldeira, K.: Global Assessment of High-Altitude Wind Power. Energies 2(2), 307–319 (2009). https://doi.org/10.3390/en20200307

  7. Bangert, R.: Google Energy Kite Nears Launch Date. Alameda Sun, 8 Oct 2015. http://alamedasun.com/news/google-energy-kite-nears-launch-date

  8. Barnstorff, K.: Ten-Engine Electric Plane Completes Successful Flight Test. NASA Langley Research Center, 30 Apr 2015. https://www.nasa.gov/langley/ten-engine-electric-planecompletes-successful-flight-test Accessed 27 Jan 2016

  9. Beccario, C.: Earth Wind Map. http://earth.nullschool.net. Accessed 18 Jan 2016

  10. Bliss, L.: ’Ubiquitous As Pigeons’: Imagining Life in the City of Drones. Citylab, 5 Aug 2014. http://www.citylab.com/tech/2014/08/ubiquitous-as-pigeons-imagining-life-in-the-city-ofdrones/375568/ Accessed 18 Jan 2016

  11. Blue Origin: The Technology of the Blue Origin System. https://www.blueorigin.com/technology. Accessed 27 Jan 2016

  12. Boccard, N.: Capacity factor of wind power realized values vs. estimates. Energy Policy 37(7), 2679–2688 (2009). https://doi.org/10.1016/j.enpol.2009.02.046

  13. Brognaux, C., Ward, N.: When Fuels Compete: The Evolving Dynamic of Global Energy Markets. bcg.perspectives, 15 July 2015. https://www.bcgperspectives.com/content/articles/energy-environment-when-fuels-compete-evolving-dynamic-global-energy-markets/ Accessed 18 Jan 2016

  14. Bundesverband der Energie- und Wasserwirtschaft e.V.: Strompreisanalyse März 2015. http://kitepower.tudelft.nl/AWEbook/bdew-strompreis-2015.pdf. Accessed 10 Oct 2017

  15. Burtin, A., Silva, V.: Technical and Economic Analysis of the European Electricity Systems with 60% RES, EDF Research and Development Division, Paris, France, 17 June 2015. http://energypost.eu/edf-study-download-15/ Accessed 18 Jan 2016

  16. Carbon Tracker: Carbon Budgets. http://www.carbontracker.org/wp-content/uploads/2014/08/Carbon-budget-checklist-FINAL-1.pdf (2013). Accessed 27 Jan 2016

  17. Cherubini, A., Papini, A., Vertechy, R., Fontana, M.: Airborne Wind Energy Systems: A review of the technologies. Renewable and Sustainable Energy Reviews 51, 1461–1476 (2015). https://doi.org/10.1016/j.rser.2015.07.053

  18. Coppinger, R.: Airbus’ Adeline Project Aims to Build Reusable Rockets and Space Tugs. Space.com, 10 June 2015. http://www.space.com/29620-airbus-adeline-reusable-rocketspace-tug.html Accessed 18 Jan 2016

  19. De Lellis, M., Mendonça, A. K., Saraiva, R., Trofino, A., Lezana, Á.: Electric power generation in wind farms with pumping kites: An economical analysis. Renewable Energy 86, 163–172 (2016). https://doi.org/10.1016/j.renene.2015.08.002

  20. Deckstein, D., Hammerstein, K. von: Unter Geiern. Innovationen: Getrieben vom rasenden technologischen Wandel, muss Siemens-Chef Joe Kaeser Europas größten Hightech-Konzern zukunftsfähig machen. Der Spiegel 49, 86–91 (2015). http://magazin.spiegel.de/EpubDelivery/spiegel/pdf/140036942

  21. Diehl, M.: Airborne Wind Energy: Basic Concepts and Physical Foundations. In: Ahrens, U., Diehl, M., Schmehl, R. (eds.) Airborne Wind Energy, Green Energy and Technology, Chap. 1, pp. 3–22. Springer, Berlin Heidelberg (2013). https://doi.org/10.1007/978-3-642-39965-7_1

  22. Drew, D. R., Barlow, J. F., Lane, S. E.: Observations of wind speed profiles over Greater London, UK, using a Doppler lidar. Journal of Wind Engineering and Industrial Aerodynamics 121, 98–105 (2013). https://doi.org/10.1016/j.jweia.2013.07.019

  23. Dunn, B., Kamath, H., Tarascon, J.-M.: Electrical Energy Storage for the Grid: A Battery of Choices. Science 334(6058), 928–935 (2011). https://doi.org/10.1126/science.1212741

  24. EnerKite GmbH: Technical Data – EK200. http://www.enerkite.de/downloads/EnerKite_200_Technical_Data_EN_SM.pdf. Accessed 18 Jan 2016

  25. Engelen, S., Ruiterkamp, R.: Simulation of the intermittency of an AP4 PowerPlane compared to a Vestas V90 wind turbine of the same rated power. Private communication, 9 Feb 2016

    Google Scholar 

  26. European Aviation Safety Agency: Transposition of Amendment 43 to Annex 2 to the Chicago Convention on remotely piloted aircraft systems (RPAS) into common rules of the air, EASA NPA 2014-09, 3 Apr 2014. https://www.easa.europa.eu/system/files/dfu/NPA%202014-09.pdf

  27. European Weather Consult. https://www.weather-consult.com. Accessed 18 Jan 2016

  28. Evans, S.: Mapped: How China dominates the global wind energy market. Carbon Brief, 19 Apr 2016. http://www.carbonbrief.org/mapped-how-china-dominates-the-global-wind-energy-market Accessed 9 May 2016

  29. Evans-Pritchard, A.: Holy Grail of energy policy in sight as battery technology smashes the old order. The Telegraph, 10 Aug 2016. http://www.telegraph.co.uk/business/2016/08/10/holygrail-of-energy-policy-in-sight-as-battery-technology-smash/

  30. Fagiano, L., Marks, T.: Design of a Small-Scale Prototype for Research in Airborne Wind Energy. IEEE/ASME Transactions on Mechatronics 20(1), 166–177 (2015). https://doi.org/10.1109/tmech.2014.2322761

  31. Fagiano, L., Schnez, S.: On the Take-off of Airborne Wind Energy Systems Based on Rigid Wings. Renewable Energy 107, 473–488 (2017). https://doi.org/10.1016/j.renene.2017.02.023

  32. Fortune Magazine: Gobal 500 2015. http://fortune.com/global500/2015. Accessed 18 Jan 2016

  33. Geiss, C.: Untersuchungen zum vertikalen Windprofil in Sachsen. Student Project Report, Chemnitz University of Technology, Jan 2012. https://www.tu-chemnitz.de/etit/eneho/lehre/studentischearbeiten.php

  34. GL Garrad Hassan: Market Status Report High Altitude Wind Energy, now merged with DNV GL, Aug 2011

    Google Scholar 

  35. Global Wind Energy Council (GWEC): Global Wind Report – Annual Market Update 2013, Apr 2014. http://www.gwec.net/wp-content/uploads/2014/04/GWEC-Global-Wind-Report_9-April-2014.pdf

  36. Grenzdörffer, G.: Investigations on the use of airborne remote sensing for variable rate treatments of fungicides, growth regulators and N-fertilisation. In: Stafford, J., Werner, A. (eds.). Precision Agriculture. Proceedings of the 4th European Conference on Precision Agriculture, pp. 241–246, Berlin, Germany, 15–19 June 2003. https://doi.org/10.3920/978-90-8686-514-7

  37. Gross, D.: The Night They Drove the Price of Electricity Down. Slate, 18 Sept 2015. http://www.slate.com/articles/business/the_juice/2015/09/texas_electricity_goes_negative_wind_power_was_so_plentiful_one_night_that.html Accessed 1 Feb 2016

  38. Hardham, C.: Response to the Federal Aviation Authority. Docket No.: FAA-2011-1279; Notice No. 11-07; Notification for Airborne Wind Energy Systems (AWES), Makani Power, 7 Feb 2012. https://www.regulations.gov/#!documentDetail;D=FAA-2011-1279-0014

  39. Hill, J. S.: Kite Power Systems Secures £2 Million Investment From Scottish Investment Bank., 22 June 2017. https://cleantechnica.com/2017/06/22/kite-power-systems-secures-2-million-investment-scottish-investment-bank/

  40. Hirtenstein, A.: The Next Plan for Drones? Tethered Aircraft Generating Power. Bloomberg, 11 Apr 2017. https://www.bloomberg.com/news/articles/2017-04-11/flying-drones-thatgenerate-power-from-wind-get-backing-from-eon.

  41. International Energy Agency (IEA): Energy and Climate Change: World Energy Outlook Special Briefing for COP21, 21 Oct 2015. http://www.iea.org/media/news/WEO_INDC_Paper_Final_WEB.PDF

  42. International Energy Agency (IEA): Medium-Term Renewable Energy Market Report 2015, OECD Publishing, Paris, 2 Oct 2015. https://doi.org/10.1787/renewmar-2015-en

  43. International Energy (IEA): World Energy Outlook 2013, OECD Publishing, Paris, 12 Nov 2013. https://doi.org/10.1787/weo-2013-en

  44. International Renewable Energy Agency: Global Atlas for Renewable Energy. http://irena.masdar.ac.ae. Accessed 18 Jan 2016

  45. International Renewable Energy Agency: Renewable Energy Cost Analysis – Wind Power. IRENA Working Paper, June 2012. http://www.irena.org/DocumentDownloads/Publications/RE_Technologies_Cost_Analysis-WIND_POWER.pdf

  46. International Renewable Energy Agency (IRENA): DTU Global Wind Atlas. http://irena.masdar.ac.ae/?map=103. Accessed 12 May 2016

  47. Jacobson, M. Z., Archer, C. L.: Saturation wind power potential and its implications for wind energy. Proceedings of the National Academy of Sciences (PNAS) 109(39), 15679–15684 (2012). https://doi.org/10.1073/pnas.1208993109

  48. Joby Aviation, Inc.: Lotus. http://www.jobyaviation.com/lotus/. Accessed 27 Jan 2016

  49. Kwasniewski, N.: Blackout-Abwehr kostete 2015 eine Milliarde Euro. Spiegel Online, 17 Jan 2016. http://www.spiegel.de/wirtschaft/unternehmen/blackout-abwehr-kostete-2015-einemilliarde-euro-a-1072438.html Accessed 18 Jan 2016

  50. Lay, J., Price-Waldman, S.: Bill Gates and the Quest for Sustainable Energy. The Atlantic, 13 Oct 2015. http://www.theatlantic.com/video/index/410011/bill-gates-and-the-quest-forsustainable-energy/

  51. Loyd, M. L.: Crosswind kite power. Journal of Energy 4(3), 106–111 (1980). https://doi.org/10.2514/3.48021

  52. Loyd, M. L.: Foreword. In: Ahrens, U., Diehl, M., Schmehl, R. (eds.) Airborne Wind Energy, Green Energy and Technology. Springer, Berlin Heidelberg (2013). https://doi.org/10.1007/978-3-642-39965-7

  53. Loyd, M. L.: Wind driven apparatus for power generation. US Patent 4,251,040, Dec 1978

    Google Scholar 

  54. MacDonald, A. E., Clack, C. T. M., Alexander, A., Dunbar, A., Wilczak, J., Xie, Y.: Future cost-competitive electricity systems and their impact on US CO2 emissions. Nature Climate Change 6, 526–531 (2016). https://doi.org/10.1038/nclimate2921

  55. Magill, B.: If a Power Plant Is Built in U.S., It’s Likely to be Renewable. Climate Central, 25 Mar 2016. http://www.climatecentral.org/news/if-a-power-plant-is-built-in-us-chancesare-its-renewable-20175

  56. Makani. https://x.company/makani/technology/. Accessed 10 Oct 2017

  57. Makani Power: FAQ. http://www.google.com/makani/faq/. Accessed 18 Jan 2016

  58. Makani Power: Makani Power Google+ Site. https://plus.google.com/+makani/posts/BWaiJZWfMsV. Accessed 18 Jan 2016

  59. Mann, S., Gunn, K., Harrison, G., Beare, B., Lazakis, I.: Wind Yield Assessment for Airborne Wind Energy. Poster presented at the EWEA Offshore Conference, Copenhagen, Denmark, 10–12 Mar 2015. http://www.ewea.org/offshore2015/conference/allposters/PO090.pdf

  60. Marvel, K., Kravitz, B., Caldeira, K.: Geophysical limits to global wind power. Nature Climate Change 3, 118–121 (2013). https://doi.org/10.1038/nclimate1683

  61. MHI Vestas Offshore Wind: V164-8.0 MW breaks world record for wind energy production. http://www.mhivestasoffshore.com/v164-8-0-mw-breaks-world-record-for-wind-energyproduction/. Accessed 18 Jan 2016

  62. MHI Vestas Offshore Wind: V164-8.0 MW testing programme to be ramped up with installation of two additional onshore turbines in Denmark. http://www.mhivestasoffshore.com/v164-8-0-mw-testing-programme-to-be-ramped-up-with-installation-of-two-additional-onshoreturbines-in-denmark/. Accessed 18 Jan 2016

  63. Montnacher, J.: Kite-Steuerungsplattform – Bodeneinheit zur Höhenwindnutzung. In: Proceedings of the workshop “Flugwindenergie”, pp. 38–51, Bremerhaven, Germany, 20 Nov 2012. http://publica.fraunhofer.de/dokumente/N-223493.html

  64. Moore, M.: NASA Wind Energy Airborne Harvesting System Study. http://awtdata.webs.com. Accessed 10 May 2016

  65. North, D. D., Aull, M. J.: Tethered vehicle control and tracking system. US Patent 8,922,041, 2014. https://technology.nasa.gov//t2media/tops/pdf/LAR-TOPS-40.pdf

  66. Pleßmann, G., Erdmann, M., Hlusiak, M., Breyer, C.: Global Energy Storage Demand for a 100% Renewable Electricity Supply. Energy Procedia 46. Proceedings of the 8th International Renewable Energy Storage Conference and Exhibition (IRES 2013), 22–31 (2014). https://doi.org/10.1016/j.egypro.2014.01.154

  67. Presse- und Informationsamt der Bundesregierung: Wie teuer wird der Ausbau der Stromtrassen und wie lange wird er dauern? https://www.bundesregierung.de/Webs/Breg/DE/Themen/Energiewende/Fragen-Antworten/2_Netzausbau/2_netzausbau/_node.html#doc605896bodyText4. Accessed 18 Jan 2016

  68. Puiu, T.: How SpaceX’s Elon Musk wants to drop space launch prices 100 fold with reusable rockets. ZME Science, 21 Aug 2013. http://www.zmescience.com/space/spacex-reusablerocket-100-times-cheaper-0432423/ Accessed 18 Jan 2016

  69. Randall, T.: Solar and Wind Just Passed Another Big Turning Point: It has never made less sense to build fossil fuel power plants. Bloomberg, 6 Oct 2015. http://www.bloomberg.com/news/articles/2015-10-06/solar-wind-reach-a-big-renewables-turning-point-bnef Accessed 18 Jan 2016

  70. Shu, C.: Aerostat startup Altaeros gets $7.5M from SoftBank to bring broadband wireless to rural areas. TechCrunch, 8 Aug 2017. http://tcrn.ch/2ulTEPv

  71. Siemens AG: Siemens to provide 175 wind turbines for the world’s largest offshore wind farm London Array. Press Release, 19 May 2009. http://www.siemens.com/press/pi/ERE200905050e Accessed 18 Jan 2016

  72. Snieckus, D.: Vestas V164 tower on a roll. Recharge News, 27 Nov 2013. http://www.rechargenews.com/wind/europe_africa/article1344738.ece Accessed 18 Jan 2016

  73. Stull, R. B.: Meteorology for Scientists and Engineers. 2nd ed. Brooks/Cole Publishing Company, Pacific Grove (2000)

    Google Scholar 

  74. United Nations Framework Convention on Climate Change (UNFCCC) Conference of the Parties (COP): Adoption of the Paris Agreement. Proposal by the President, Decision 1/CP.21, 12 Dec 2015. http://undocs.org/FCCC/CP/2015/L.9/Rev.1

  75. US Energy Information Administration: How much energy does a person use in a year? http://www.eia.gov/tools/faqs/faq.cfm?id=85&t=1. Accessed 18 Jan 2016

  76. Zanon, M., Gros, S., Andersson, J., Diehl, M.: Airborne Wind Energy Based on Dual Airfoils. IEEE Transactions on Control Systems Technology 21(4), 1215–1222 (2013). https://doi.org/10.1109/tcst.2013.2257781

  77. Zhang, S.: SpaceX’s Falcon Rocket Finally Sticks the Landing. Wired Science, 21 Dec 2015. http://www.wired.com/2015/12/spacex-just-landed-rocket-ground-first-time/ Accessed 18 Jan 2016

  78. Zillmann, U.: The Trillion Dollar Drone. European Energy Review, 24 June 2015. http://www.europeanenergyreview.eu/the-trillion-dollar-drone/ Accessed 30 July 2016

  79. Zillmann, U.: The Trillion Dollar Drone – A Change of Perspective. In: Schmehl, R. (ed.). Book of Abstracts of the International Airborne Wind Energy Conference 2015, p. 60, Delft, The Netherlands, 15–16 June 2015. https://doi.org/10.4233/uuid:7df59b79-2c6b-4e30-bd58-8454f493bb09. Presentation video recording available from: https://collegerama.tudelft.nl/Mediasite/Play/aca3c3f29eb54dc3b6ca4cde1a68084c1d

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Udo Zillmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zillmann, U., Bechtle, P. (2018). Emergence and Economic Dimension of Airborne Wind Energy. In: Schmehl, R. (eds) Airborne Wind Energy. Green Energy and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-10-1947-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-1947-0_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-1946-3

  • Online ISBN: 978-981-10-1947-0

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics