From Particles in Steady State Shear Bands via Micro-Macro to Macroscopic Rheology Laws

  • S. LudingEmail author
  • A. Singh
  • S. Roy
  • D. Vescovi
  • T. Weinhart
  • V. Magnanimo
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 188)


Particulate systems and granular matter are discrete systems made of many particles; they display interesting dynamic or static, fluid- or solid-like states, respectively, or both together. The challenge of bridging the gap between the particulate, microscopic picture towards their continuum description (via the so-called micro-macro transition) is one of today’s challenges of modern research. This short paper gives a brief overview of recent progress and some new insights about local granular flow rules for soft particles.


Micro-macro transition Flow rules Rheology Macroscopic friction 


  1. 1.
    Luding, S.: The effect of friction on wide shear bands. Part. Sci. Technol. 26, 33–42 (2008)ADSCrossRefGoogle Scholar
  2. 2.
    Luding, S., Alonso-Marroquin, F.: The critical-state yield stress (termination locus) of adhesive powders from a single experiment. Granular Matter 13, 109–119 (2011)CrossRefGoogle Scholar
  3. 3.
    Weinhart, T., Hartkamp, R., Thornton, A.R., Luding, S.: Coarse-grained local and objective continuum description of 3D granular flows down an inclined surface. Phys. Fluids 25, 070605 (2013)ADSCrossRefGoogle Scholar
  4. 4.
    Hartkamp, R., Todd, B., Luding, S.: A constitutive framework for the non-Newtonian pressure tensor of a simple fluid under planar flows. J. Chem. Phys. 138, 244508 (2013)ADSCrossRefGoogle Scholar
  5. 5.
    Singh, A., Saitoh, K., Magnanimo, V., Luding, S.: Role of gravity or confining pressure and contact stiffness in granular rheology. New J. Phys. 17, 043028 (2015)ADSCrossRefGoogle Scholar
  6. 6.
    Singh, A., Magnanimo, V., Saitoh, K., Luding, S.: Effect of cohesion on shear banding in quasi-static granular material. Phys. Rev. E 90(2), 022202 (2014)ADSCrossRefGoogle Scholar
  7. 7.
    Roy, S., Singh, A., Luding, S., Weinhart, T.: Micro-macro transition and simplified contact models for wet granular materials. Comp. Part. Mech. 1–14(2015). doi: 10.1007/s40571-015-0061-8
  8. 8.
    Roy, S., Luding, S., Weinhart, T.: Towards hydrodynamic simulations of wet particle systems. Procedia Eng. 102, 1531–1538 (2015). (ISSN 1877-7058)CrossRefGoogle Scholar
  9. 9.
    Göncü, F., Luding, S.: Effect of particle friction and polydispersity on the macro-scopic stress-strain relations of granular materials. Acta Geotechnol 8, 629–643 (2013)CrossRefGoogle Scholar
  10. 10.
    Kumar, N., Luding, S., Magnanimo, V.: Macroscopic model with anisotropy based on micro-macro informations. Acta Mech. 225(8), 2319–2343 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Goldhirsch, I.: Stress, stress asymmetry and couple stress: from discrete particles to continuous fields. Granular Matter 12, 239–252 (2010)CrossRefzbMATHGoogle Scholar
  12. 12.
    Weinhart, T., Thornton, A.R., Luding, S., Bokhove, O.: From discrete particles to continuum fields near a boundary. Granular Matter 14, 289–294 (2012)CrossRefGoogle Scholar
  13. 13.
    Midi, G.D.R.: On dense granular flows. E. Phys. J. E 14, 367–371 (2004)CrossRefGoogle Scholar
  14. 14.
    Ries, A., Wolf, D.E., Unger, T.: Shear zones in granular media: three-dimensional contact dynamics simulations. Phys. Rev. E 76, 051301 (2007)ADSCrossRefGoogle Scholar
  15. 15.
    Nguyen, V.B., Darnige, T., Bruand, A., Clement, E.: Creep and fluidity of a real granular packing near jamming. Phys. Rev. Lett. 107, 138303 (2011)ADSCrossRefGoogle Scholar
  16. 16.
    Kamrin, K., Koval, G.: Nonlocal constitutive relation for steady granular flow. Phys. Rev. Lett. 108, 178301 (2012)ADSCrossRefGoogle Scholar
  17. 17.
    Henann, D.L., Kamrin, K.: A predictive, size-dependent continuum model for dense granular flows. Proc. Natl. Acad. Sci. USA 110, 6730–6735 (2013)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Pons, A., Darnige, T., Crassous, J., Clement, E., Amon, A.: Spatial repartition of local plastic processes in different creep regimes in a granular material (2016). arXiv:1601.05671v1
  19. 19.
    Koval, G., Roux, J.-N., Corfdir, A., Chevoir, F.: Annular shear of cohesionless granular materials: from the inertial to quasistatic regime. Phys. Rev. E 79, 021306 (2009)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Singapore 2017

Authors and Affiliations

  • S. Luding
    • 1
    Email author
  • A. Singh
    • 1
  • S. Roy
    • 1
  • D. Vescovi
    • 1
  • T. Weinhart
    • 1
  • V. Magnanimo
    • 1
  1. 1.MSM, Engineering Technology, MESA+University of TwenteEnschedeThe Netherlands

Personalised recommendations