Advertisement

MercuryDPM: A Fast and Flexible Particle Solver Part A: Technical Advances

  • T. Weinhart
  • D. R. Tunuguntla
  • M. P. van Schrojenstein-Lantman
  • A. J. van der Horn
  • I. F. C. Denissen
  • C. R. Windows-Yule
  • A. C. de Jong
  • A. R. Thornton
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 188)

Abstract

MercuryDPM is an open-source particle simulation tool—fully written in C++—developed at the University of Twente. It contains a large range of contact models, allowing for simulations of complex interactions such as sintering, breaking, plastic deformation, wet-materials and cohesion, all of which have important industrial applications. The code also contains novel complex wall generation techniques, that can exactly model real industrial geometries. Additionally, MercuryDPMs’ state-of-the-art built-in statistics package constructs accurate three-dimensional continuum fields such as density, velocity, structure and stress tensors, providing information often not available from scaled-down model experiments or pilot plants. The statistics package was initially developed to analyse granular mixtures flowing over inclined channels, and has since been extended to investigate several other granular applications. In this proceeding, we review these novel techniques, whereas its applications will be discussed in its sequel.

Keywords

Cellular Automaton Discrete Element Method Cellular Automaton Direct Simulation Monte Carlo Granular Flow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We acknowledge and thank the support of several research grants for their financial support to develop MercuryDPM.

References

  1. 1.
    Herrmann, H.J., Luding, S.: Continuum Mech. Thermodyn. 10, 189–231 (1998)ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    Goles, E.: Sandpile automata. In: Annales de l’IHP Physique theorique, vol. 56, pp. 75–90. Elsevier (1992)Google Scholar
  3. 3.
    Karolyi, A., et al.: Europhys. Lett. 44(3), 386 (1998)ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    Tejchman, J.: Simulations of flow pattern with cellular automaton. In: Confined Granular Flow in Silos, pp. 455–492. Springer (2013)Google Scholar
  5. 5.
    Alonso, J.J., Herrmann, H.J.: Phys. Rev. Lett. 76(26), 4911 (1996)ADSCrossRefGoogle Scholar
  6. 6.
    Jasti, V.K., Higgs III, C.F.: Granular Matter 12(1), 97–106 (2010)CrossRefGoogle Scholar
  7. 7.
    Marinack, M., Higgs, C.F.: Powder Technol (2015)Google Scholar
  8. 8.
    LaMarche, K.R., et al.: Granular Matter 9(3–4), 219–229 (2007)CrossRefGoogle Scholar
  9. 9.
    Marks, B., Einav, I.: Granular Matter 13(3), 211–214 (2011)CrossRefGoogle Scholar
  10. 10.
    Yanagita, T.: Phys. Rev. Lett. 82(17), 3488 (1999)ADSCrossRefGoogle Scholar
  11. 11.
    Santomaso, A.C., et al.: Chem. Eng. Sci. 90, 151–160 (2013)CrossRefGoogle Scholar
  12. 12.
    Baxter, G.W., Behringer, R.P.: Phys. Rev. A 42(2), 1017–1020 (1990)ADSCrossRefGoogle Scholar
  13. 13.
    Bird, G.A.: Molecular Gas Dynamics and the Direct Simulation of Gas Flows. Claredon, Oxford (1994)Google Scholar
  14. 14.
    Müller, M., Herrmann, H.J.: DSMC—a stochastic algorithm for granular matter. In: Physics of Dry Granular Media, pp. 413–420. Springer (1998)Google Scholar
  15. 15.
    Müller, M., et al.: Simulations of vibrated granular media in 2D and 3D (1997)Google Scholar
  16. 16.
    Reyes, F., et al.: Phys. Rev. E 83(2), 021302 (2011)ADSCrossRefGoogle Scholar
  17. 17.
    Du, M., et al.: Chem. Eng. Sci. 66(20), 4922–4931 (2011)CrossRefGoogle Scholar
  18. 18.
    Pawar, S.K., et al.: Chem. Eng. Sci. 105, 132–142 (2014)CrossRefGoogle Scholar
  19. 19.
    Windows-Yule, C.R.K., et al.: Comput. Part. Mech. 3(3), 311–332 (2016)CrossRefGoogle Scholar
  20. 20.
    Luding, S.: Eur. J. Environ. Civil Eng. 12(7–8), 785–826 (2008)CrossRefGoogle Scholar
  21. 21.
    Ketterhagen, W.R., et al.: J. Pharm. Sci. 98(4), 442–470 (2009)CrossRefGoogle Scholar
  22. 22.
    Guo, Y., Curtis, J.S.: Annu. Rev. Fluid Mech. 47, 21–46 (2015)ADSCrossRefGoogle Scholar
  23. 23.
    Windows-Yule, C.R.K., et al.: Comput. Part. Mech. 3(3), 311–332 (2016)CrossRefGoogle Scholar
  24. 24.
    Zhu, H.P., et al.: Chem. Eng. Sci. 62(13), 3378–3396 (2007)CrossRefGoogle Scholar
  25. 25.
    Feng, Y.T., et al.: Eng. Comput. 30(2), 157–196 (2013)CrossRefGoogle Scholar
  26. 26.
    Zhu, H.P., et al.: Chem. Eng. Sci. 63(23), 5728–5770 (2008)CrossRefGoogle Scholar
  27. 27.
    Thornton, A.R., et al.: Newslett. EnginSoft 10(1), 48–53 (2013)Google Scholar
  28. 28.
    Thornton, A.R., et al.: Proceedings 6th International Conference on Discrete Element Methods (DEM), pp. 393–399 (2013)Google Scholar
  29. 29.
    Thornton, A.R., Weinhart, T., et al.: Mercurydpm (2009–2016). http://MercuryDPM.org/
  30. 30.
    Ogarko, V., Luding, S.: Comput. Phys. Commun. 183(4), 931–936 (2012)ADSCrossRefGoogle Scholar
  31. 31.
    Weinhart, T., et al.: Granular Matter 14(2), 289–294 (2012)CrossRefGoogle Scholar
  32. 32.
    Tunuguntla, D.R., et al.: Comput. Part. Mech. 3(3), 349–365 (2016)CrossRefGoogle Scholar
  33. 33.
    Hartkamp, R., et al.: J. Chem. Phys. 137(4) (2012)Google Scholar
  34. 34.
    Tunuguntla, D.R., et al.: J. Fluid Mech. 749, 99–112 (2014)Google Scholar
  35. 35.
    Windows-Yule, C.R.K., et al.: Phys. Rev. Lett. 112 (2014)Google Scholar
  36. 36.
    Weinhart, T., et al.: Powder Technol. 293, 138–148 (2015)CrossRefGoogle Scholar
  37. 37.
    Thornton, B., et al.: Eur. Phys. J. E Soft Matter 35, 9804 (2012)CrossRefGoogle Scholar
  38. 38.
    Weinhart, T., et al.: Granular Matter 14(4), 531–552 (2012)CrossRefGoogle Scholar
  39. 39.
    Thornton, A., et al.: Int. J. Mod. Phys. C 23(08), 1240014 (2012)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Singapore 2017

Authors and Affiliations

  • T. Weinhart
    • 1
  • D. R. Tunuguntla
    • 1
  • M. P. van Schrojenstein-Lantman
    • 1
  • A. J. van der Horn
    • 1
  • I. F. C. Denissen
    • 1
  • C. R. Windows-Yule
    • 1
  • A. C. de Jong
    • 1
  • A. R. Thornton
    • 1
  1. 1.Multiscale Mechanics, Engineering Technology/MESA+University of TwenteEnschedeThe Netherlands

Personalised recommendations