Skip to main content

Spectral Finite Element Method

  • Chapter
  • First Online:

Part of the book series: Foundations of Engineering Mechanics ((FOUNDATIONS))

Abstract

Spectral finite element method (SFEM) is an efficient technique for solving problems where the frequency content of the input signal is very high. The spectral formulation requires that the assembled system of equations be solved in the frequency domain and utilizes the Fast Fourier Transform (FFT) to transform the time domain responses to the frequency domain and back. Typically, SFEM uses the exact solution of the governing differential equation in the frequency domain as the interpolating function for element formulation. As a result, the spectral element treats the distribution of mass and rotational inertia of the structural element exactly. In general, for simple problems, only one spectral element needs be placed between any two joints, substantially reducing the total number of degrees of freedom in the system.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Banerjee JR (2000) Free vibration of centrifugally stiffened uniform and tapered beams using the dynamic stiffness method. J Sound Vib 233(5):857–875

    Article  MATH  Google Scholar 

  2. Boyce WE (1956) Effect of hub radius on the vibration of uniform bar. J Appl Mech 23(2):287–290

    MATH  Google Scholar 

  3. Cesnik CES, Shin S (2001) On the modeling of integrally actuated helicopter blades. Int J Solids Str 38(10–13):1765–1789

    Article  MATH  Google Scholar 

  4. Chakraborty A, Gopalakrishnan S (2003) A spectrally formulated finite element for wave propagation analysis in functionally graded beams. Int J Solid Str 40:2421–2448

    Article  MATH  Google Scholar 

  5. Chakraborty A, Gopalakrishnan S (2005) A spectral finite element for axial-flexural-shear coupled wave propagation analysis in lengthwise graded beam. Comput Mech 36:1–12

    Article  MATH  Google Scholar 

  6. Chakraborty A, Sivakumar MS, Gopalakrishnan S (2006) Spectral element based model for wave propogation analysis in multi-wall carbon nanotubes. Int J Solid Str 43(2):279–294

    Article  MATH  Google Scholar 

  7. Cheng J, Xu H (2006) Inner mass impact damper for attenuating structure vibration. Int J Solid Str 43(17):5355–5369

    Article  MATH  Google Scholar 

  8. Chung J, Yoo HH (2002) Dynamic analysis of a rotating cantilever beam by using the finite element method. J Sound Vib 249(1):147–164

    Article  Google Scholar 

  9. Datta PK, Ganguli R (1990) Vibration characteristics of rotating gas turbine blades with localized damage including the effects of shear deformation and rotary inertia. Comput Str 36(6):1129–1133

    Article  Google Scholar 

  10. Doyle JF (1988) A spectrally formulated finite element for longitudinal wave propagation. Int J Anal Exp Modal Anal 5:99–107

    Google Scholar 

  11. Doyle JF (1989) Wave Propagation in Structures: an FFT based spectral analysis methodology. Springer, New York

    Google Scholar 

  12. Doyle JF, Farris TN (1990) A spectrally formulated element for flexural wave propagation in beams. Int J Anal Exp Modal Anal 3:1–5

    Google Scholar 

  13. Fox CHJ, Burdess JS (1979) The natural frequencies of a thin rotating cantilever with offset root. J Sound Vib 65:151–158

    Article  MATH  Google Scholar 

  14. Gopalakrishnan S, Martin M, Doyle JF (1992) A matrix methodology for spectral analysis of wave propagation in multiple connected Timoshenko beams. J Sound Vib vol 158(l). pp 11–24

    Google Scholar 

  15. Gopalakrishnan S, Doyle JF (1994) Wave propagation in connected waveguides of varying cross-section. J Sound Vib 175(3):347–363

    Article  MATH  Google Scholar 

  16. Gudla PK, Ganguli R (2006) Discontinuous Galerkin finite element in time for solving periodic differential equations. Comput Method Appl Mech Eng 196(1–3):682–696

    Article  MATH  Google Scholar 

  17. Hodges DH, Rutkowski MJ (1981) Free-vibration analysis of rotating beams by a variable-order finite element method. AIAA J 19(11):1459–1466

    Article  MATH  Google Scholar 

  18. Hodges DH (1979) Vibration response of non-uniform rotating beams with discontinuities. J Am Helicopter Soc 24(5):43–50

    Article  Google Scholar 

  19. Hunter WF (1970) Integrating matrix method for determining the natural vibration characteristics of propeller blades. NASA TN D-6064

    Google Scholar 

  20. Khulief YA (1989) Vibration frequencies of a rotating tapered beam with end mass. J Sound Vib 134(1):87–97

    Article  Google Scholar 

  21. Lawther R (2007) Assessing how changes to a structure can create gaps in the natural frequency spectrum. Int J Solid Str 44(2):614–635

    Article  MathSciNet  MATH  Google Scholar 

  22. Lee U, Oh H (2005) Dynamics of an axially moving viscoelastic beam subject to axial tension. Int J Solid Str 42(8):2381–2398

    Article  MATH  Google Scholar 

  23. Martin M, Gopalakrishanan S, Doyle JF (1994) Wave propagation in multiply connected deep wave guides. J Sound Vib 174(4):521–538

    Article  MATH  Google Scholar 

  24. Naguleswaran N (1994) Lateral vibration of a centrifugally tensioned uniform Euler-Bernoulli beam. J Sound Vib 176(5):613–624

    Article  MATH  Google Scholar 

  25. Narayanan GV, Beskos DE (1982) Numerical operational methods for time-dependant linear problems. Int J Numer Method Eng 18:1829–1854

    Article  MathSciNet  MATH  Google Scholar 

  26. Pawar PM, Ganguli R (2003) Genetic fuzzy system for damage detection in beams and helicopter rotor blades. Comput Methods Appl Mech Eng 192:2031–2057

    Article  MATH  Google Scholar 

  27. Pawar PM, Ganguli R (2007) On the effect of progressive damage on composite helicopter rotor system behavior. Compos Str 78(3):410–423

    Article  Google Scholar 

  28. Pnueli D (1972) Natural bending frequency comparable to rotational frequency in rotating cantilever beam. J Appl Mech 39(2):604–606

    Article  Google Scholar 

  29. Putter S, Manor H (1978) Natural frequencies of radial rotating beams. J Sound Vib 56:175–185

    Article  MATH  Google Scholar 

  30. Rossing TD, Fletcher NH (1995) Principles of vibration and sound. Springer, New York

    Book  MATH  Google Scholar 

  31. Roy N, Ganguli R (2005) Helicopter rotor blade frequency evolution with damage growth and signal processing. J Sound Vib 283(3–5):821–851

    Article  Google Scholar 

  32. Roy Mahapatra D, Gopalakrishnan S, Sankar TS (2000) Spectral-element-based solutions for wave propagation analysis of multiply connected unsymmetric laminated composite beams. J Sound Vib 237(5):819–836

    Article  Google Scholar 

  33. Roy Mahapatra D, Gopalakrishnan S (2003) A spectral finite element model for analysis of axial-flexural-shear coupled wave propagation in laminated composite beams. Compos Str 59:67–88

    Article  Google Scholar 

  34. Stephen NG, Zhang Y (2006) Eigen analysis and continuum modeling of pre-twisted repetitive beam-like structures. Int J Solid Str 43(13):3832–3855

    Article  MATH  Google Scholar 

  35. Thakkar D, Ganguli R (2004) Dynamic response of rotating beams with piezoceramic actuation. J Sound Vib 270(4–5):729–753

    Article  Google Scholar 

  36. Vinod KG, Gopalakrishnan S, Ganguli R (2006) Wave propagation characteristics of rotating uniform Euler-Bernoulli beams. Computer Modeling in Engineering and Sciences. Accepted

    Google Scholar 

  37. Wang G, Wereley NM (2004) Free vibration analysis of rotating blades with uniform tapers. AIAA J 42(12):2429–2437

    Article  Google Scholar 

  38. Wright AD, Smith CE, Thresher RW, Wang JLC (1982) Vibration modes of centrifugally stiffened beams. J Appl Mech 49(2):197–202

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ranjan Ganguli .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Ganguli, R. (2017). Spectral Finite Element Method. In: Finite Element Analysis of Rotating Beams. Foundations of Engineering Mechanics. Springer, Singapore. https://doi.org/10.1007/978-981-10-1902-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-1902-9_8

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-1901-2

  • Online ISBN: 978-981-10-1902-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics