Skip to main content

Fourier-p Superelement

  • Chapter
  • First Online:
Book cover Finite Element Analysis of Rotating Beams

Part of the book series: Foundations of Engineering Mechanics ((FOUNDATIONS))

  • 1277 Accesses

Abstract

Typically, the conventional finite element method (CFEM) for rotating beams uses cubic polynomials as interpolating functions and convergence is achieved by increasing the number of elements. Since dynamic analysis requires at least the first five modes, capturing these modes accurately requires many elements which leads to a large size eigenvalue problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cai GP, Hong JZ, Yang SX (2004) Model study and active control of a rotating flexible cantilever beam. Int J Mech Sci 46(6):871–889

    Article  MATH  Google Scholar 

  2. Thakkar D, Ganguli R (2006) Use of single crystal and soft piezoceramics for alleviation of flow separation induced vibration in a smart helicopter rotor. Smart Mater Struct 15(2):331–341

    Article  Google Scholar 

  3. Wang G, Wereley NM (2004) Free vibration analysis of rotating blades with uniform tapers. AIAA J 42(12):2429–2437

    Article  Google Scholar 

  4. Ganguli R, Chopra I, Weller WH (1998) Comparison of calculated vibratory rotor hub loads with experimental data. J Am Helicopter Soc 43(4):312–318

    Article  Google Scholar 

  5. Banerjee JR (2000) Free vibration of centrifugally stiffened uniform and tapered beams using the dynamic stiffness method. J Sound Vib 233(5):857–875

    Article  MATH  Google Scholar 

  6. Wright AD, Smith CE, Thresher RW, Wang JLC (1982) Vibration modes of centrifugally stiffened beams. J Appl Mech 49(2):197–202

    Article  MATH  Google Scholar 

  7. Vinod KG, Gopalakrishnan S, Ganguli R (2006) Wave propogation characteristics of rotating uniform Euler–Bernoulli beams. CMES- Comput Model Eng Sci 16(3):197–208

    MATH  Google Scholar 

  8. Vinod KG, Gopalakrishnan S, Ganguli R, Free vibration and wave propogation analysis of uniform and tapered rotating beams using spectrally formulated finite elements. Int J Solids Struct (Accepted)

    Google Scholar 

  9. Ahmadian MT, Zangench MS (2002) Vibration analysis of orthotropic rectangular plates using superelements. Comput Methods Appl Mech Eng 191(19–20):2097–2103

    Article  MATH  Google Scholar 

  10. Belyi MV (1993) Superelement method for transient dynamic analysis of structural systems. Int J Numer Methods Eng 36(13):2263–2286

    Article  MATH  Google Scholar 

  11. Koko TS (1992) Vibration analysis of stiffened plates by super elements. J Sound Vib 158(1):149–167

    Article  MathSciNet  MATH  Google Scholar 

  12. West LJ, Bardell NS, Dunsdon JM, Loasby PM (1997) Some limitations associated with the use of \(K\)-orthogonal polynomials in hierarchial versions of the finite element method. In: The sixth international conference on recent advances in structural dynamics, Southhampton, UK, pp 217–227

    Google Scholar 

  13. Leung AYT, Chan JKW (1998) Fourier \(p\)-element for the analysis of beams and plates. J Sound Vib 212(1):179–185

    Article  Google Scholar 

  14. Yongqiang L (2006) Free vibration analysis of plate using finite strip Fourier \(p\)-element. J Sound Vib 294(4–5):1051–1059

    Article  Google Scholar 

  15. Kumar S, Roy N, Ganguli R (2007) Monitoring low cycle fatigue damage in turbine blade using vibration characteristics. Mech Syst Signal Process 21(1):480–501

    Article  Google Scholar 

  16. Ganguli R (2001) A fuzzy logic system for ground based structural health monitoring of a helicopter rotor using modal data. J Intell Mater Syst Struct 12(6):397–407

    Article  Google Scholar 

  17. Leung AYT, Zhu B (2004) Fourier \(p\)-elements for curved beam vibrations. Thin-Walled Struct 42:39–57

    Article  Google Scholar 

  18. Hodges DJ, Rutkowsky MJ (1981) Free vibration analysis of rotating beams by a variable order finite element method. AIAA J 19(11):1459–1466

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ranjan Ganguli .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Ganguli, R. (2017). Fourier-p Superelement. In: Finite Element Analysis of Rotating Beams. Foundations of Engineering Mechanics. Springer, Singapore. https://doi.org/10.1007/978-981-10-1902-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-1902-9_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-1901-2

  • Online ISBN: 978-981-10-1902-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics