Advertisement

Anatomy

  • Dieter Overdieck
Chapter
Part of the Ecological Research Monographs book series (ECOLOGICAL)

Abstract

Modification of stomatal density, guard cell length, and number of epidermal cells/leaf area unit are related to [CO2] and temperature as shown by studies on fossils, herbal material, and today’s leaf samples. In the studies making use of the older material, the number of stomata/leaf area unit decreased at elevated [CO2], and in some cases it also decreased with elevated temperature. These results contrast with studies using today’s leaf samples. Reasons for the different results are discussed. Slightly more phloem tissue is found in today’s leaf samples at elevated [CO2]. Mixed results are presented from studies on stem wood anatomy, including lumen of xylem vessels, the length of xylem vessels, the number of xylem vessels/unit of transectional area, the resin canal and wood ray density, and the number of cambial cells, at elevated [CO2] and increased temperature. Elevated [CO2] affects tangential cell wall width, annual tree-ring width, and wood density positively. In addition, clear positive effects of elevated temperature as well as elevated [CO2] x increased temperature are shown. Results are summarized in a meta-analysis.

Keywords

Stomatal density Living fossils Mesophyll Leaf vascular area Wood density Tree-ring width Resin canals Wood rays Tracheids Water conducting capacity 

References

  1. Ainsworth EA, Rogers A (2007) The response of photosynthesis and stomatal conductance to rising [CO2]: mechanisms and environmental interactions. Plant Cell Environ 30:258–270PubMedCrossRefGoogle Scholar
  2. Andreu-Hayles L, Planells O, Gutiérrez E, Muntan E, Helle G, Anchukaitis KJ, Schleser GH (2011) Long tree-ring chronologies reveal 20th century increases in water use efficiency but no enhancement of tree growth at five Iberian pine forests. Glob Chang Biol 17:2095–2112CrossRefGoogle Scholar
  3. Atkinson CJ, Taylor JM (1996) Effects of elevated CO2 on stem growth, vessel area and hydraulic conductivity of oak and cherry seedlings. New Phytol 133:617–626CrossRefGoogle Scholar
  4. Bannan MW (1962) The vascular cambium and tree ring development. In: Koszlowski TT (ed) Tree growth. Ronald Press, New York, pp 3–21Google Scholar
  5. Becker M, Nieminen TM, Gérémia F (1994) Short-term variations and long-term changes in oak productivity in northeastern France. The role of climate and atmospheric CO2. Ann Sci For 51:477–492CrossRefGoogle Scholar
  6. Beismann H, Schweingruber F, Speck T, Körner C (2002) Mechanical properties of spruce and beech grown in elevated CO2. Trees 16:511–518CrossRefGoogle Scholar
  7. Bergès L, Dupouey J-L, Franc A (2000) Long-term changes in wood density and radial growth of Quercus petraea Liebl. in northern France since the middle of the nineteenth century. Trees 14:398–408CrossRefGoogle Scholar
  8. Bobich EG, Barron-Gafford GA, Rascher KG, Murthy R (2010) Effects of drought and changes in vapour pressure deficit on water relations of Populus deltoides growing in ambient and elevated CO2. Tree Physiol 30:866–875PubMedCrossRefGoogle Scholar
  9. Bonal D, Ponton S, Le Thiec D, Richard B, Ningre N, Hérault B, Ogée J, Gonzalez S, Pignal M, Sabatier D, Guehl J-M (2011) Leaf functional response to increasing atmospheric CO2 concentrations over the last century in two northern Amazonian tree species: a historical δ13C and δ18O approach using herbarium samples. Plant Cell Environ 34:1332–1344PubMedCrossRefGoogle Scholar
  10. Bouriaud O, Bréda N, Le Moguédec G, Nedveu G (2004) Modeling variability of wood density in beech as affected by ring age, radial growth and climate. Trees 18:264–276CrossRefGoogle Scholar
  11. Brienen RJW, Gloor E, Zuidema PA (2012) Detecting evidence for CO2 fertilization from tree ring studies. The potential of sampling biases. Glob Biochem Cycles 26: GB1025, doi: 10.1029/2011GB004143
  12. Briffa KR, Schweingruber FH, Jones PD, Osborn TJ, Shiyatov SG, Vagonov EA (1998) Reduced sensitivity of recent tree-growth to temperature at high northern latitudes. Nature 391:678–682CrossRefGoogle Scholar
  13. Camarero JJ, Gazol A, Galván JD, Sangüesa-Barreda G, Gutiérrez E (2015) Disparate effects of global change drivers on mountain conifer forests: warming-induced growth enhancement in young trees vs. CO2 fertilization in old trees from wet sites. Glob Chang Biol 21:738–749PubMedCrossRefGoogle Scholar
  14. Campelo F, Nabais C, Gutiérrez E, Freitas H, García-González I (2010) Vessel features of Quercus ilex L. growing under Mediterranean climate have a better climatic signal than tree-ring width. Trees 24:463–470CrossRefGoogle Scholar
  15. Ceulemans R, Jach ME, van de Velde R, Lin JX, Stevens M (2002) Elevated atmospheric CO2 alters wood production, wood quality and wood strength of Scots pine (Pinus sylvestris L.) after three years of enrichment. Glob Chang Biol 8:153–162CrossRefGoogle Scholar
  16. Conroy JP, Barlow EWR, Bevege DI (1986) Response of Pinus radiata seedlings to carbon dioxide enrichment at different levels of water and phosphorus: growth, morphology and anatomy. Ann Bot 57:105–117Google Scholar
  17. Daux V, Edouard JL, Masson-Delmotte V, Stievenard M, Hoffmann G, Pierre M, Mestre O, Danis PA, Guibal F (2011) Can climate variations be inferred from tree–ring parameters and stable isotopes from Larix decidua? Juvenile effects, budmoth outbreaks, and divergence issue. Earth Planet Sci Lett 309:221–233CrossRefGoogle Scholar
  18. Dawes MA, Hättenschwiler S, Bebi P, Hagedorn F, Handa IT, Körner C, Rixen C (2011) Species-specific tree growth responses to 9 years of CO2 enrichment at the alpine treeline. J Ecol 99:383–394Google Scholar
  19. Decoux V, Varcin Ế, Leban J-M (2004) Relationship between the intra-ring wood density assessed by X-ray densitometry and optical anatomical measurements in conifers. Consequences for the cell wall apparent density determination. Ann For Sci 61:251–262CrossRefGoogle Scholar
  20. Doheny-Adams T, Hunt L, Franks PJ, Beerling DJ, Gray JE (2012) Genetic manipulation of stomatal density influences stomatal size, plant growth and tolerance to restricted water supply across a growth carbon dioxide gradient. Philos Trans R Soc B 367:547–555CrossRefGoogle Scholar
  21. Druart N, Rodriguez-Buey M, Barro-Gafford G, Sjödin A, Bhalerao R, Hurry V (2006) Molecular targets of elevated [CO2] in leaves and stems of Populus deltoides: implications for future growth and carbon sequestration. Funct Plant Biol 33:121–131CrossRefGoogle Scholar
  22. Eckstein D (2004) Change in past environments – secrets of the tree hydrosystem. New Phytol 163:1–4CrossRefGoogle Scholar
  23. Evans JR, Kaldenhoff R, Genty B, Terashima I (2009) Resistances along the CO2 diffusion pathway inside leaves. J Exp Bot 60:2235–2248PubMedCrossRefGoogle Scholar
  24. Fonti P, von Arx G, Gracía-González I, Eilmann B, Sass-Klaassen U, Gärtner H, Eckstein D (2010) Studying global change through investigation of the plastic responses of xylem anatomy in tree rings. New Phytol 185:42–53PubMedCrossRefGoogle Scholar
  25. Fonti P, Tabakova MA, Kirdyanov AV, Bryukhanova MV, von Arx G (2015) Variability of ray anatomy of Larix gmelinii along a forest productivity gradient in Siberia. Trees 29:1165–1175CrossRefGoogle Scholar
  26. Ford CR, Goranson CE, Mitchell RJ, Will RE, Teskey RO (2004) Diurnal and seasonal variability in radial distribution of sap flow: predicting total stem flow in Pinus taeda trees. Tree Physiol 24:951–960CrossRefGoogle Scholar
  27. Franceschini T, Bontemps J-D, Gelhaye P, Rittie D, Herve J-C, Gegout J-C, Leban J-M (2010) Decreasing trend and fluctuations in the mean ring density of Norway spruce through the twentieth century. Annales des Sciences Forestières (Ann For Sci) 67:816–1010Google Scholar
  28. Fritts HC (1976) Tree rings and climate. Academic, LondonGoogle Scholar
  29. Gartner BL, Roy J, Huc R (2003) Effect of tension wood on specific conductivity and vulnerability to embolism of Quercus ilex seedlings grown at two atmospheric CO2 concentrations. Tree Physiol 23:387–395PubMedCrossRefGoogle Scholar
  30. Griffin KL, Anderson OR, Tissue DT, Turnbull MH, Whitehead D (2004) Variations in dark respiration and mitochondrial numbers within needles of Pinus radiata grown in ambient or elevated CO2 partial pressure. Tree Physiol 24:347–353PubMedCrossRefGoogle Scholar
  31. Handa IT, Körner C, Hättenschwiler S (2006) Conifer stem growth at the altitudinal treeline in response to four years of CO2 enrichment. Glob Chang Biol 12:2417–2430CrossRefGoogle Scholar
  32. Hättenschwiler S, Miglietta F, Raschi A, Körner C (1997) Thirty years of in situ tree growth under elevated CO2: a model for future forest responses? Glob Chang Biol 3:463–471CrossRefGoogle Scholar
  33. Haworth M, Elliott-Kingston E, McElwain JC (2011) The stomatal CO2 proxy does not saturate at high atmospheric CO2 concentration: evidence from stomatal index responses of Araucariaceae conifers. Oecologia 167:11–19PubMedCrossRefGoogle Scholar
  34. Hetherington AM, Woodward FI (2003) The role of stomata in sensing and driving environmental change. Nature 424:901–908PubMedCrossRefGoogle Scholar
  35. Hirano A, Hongo I, Koike T (2012) Morphological and physiological responses of Siebold’s beech (Fagus crenata) seedlings grown under CO2 concentrations ranging from pre-industrial to expected future levels. Landsc Ecol Eng 8:59–67CrossRefGoogle Scholar
  36. Hoch G, Körner C (2003) The carbon charging of pines at the climate treeline: a global comparison. Oecologia 135:10–21PubMedCrossRefGoogle Scholar
  37. Horáček P, Ślezingerová J, Gandelova L (1999) Effects of environment on the xylogenesis of Norway spruce (Picea abies [L.] Karst.). In: Wimmer R, Vetter RE (eds) Tree-ring analysis. Biological, methodological and environmental aspects. CABI Publishing, Oxon, pp 33–54Google Scholar
  38. Kaakinen S, Kostiainen K, Ek F, Saranpää P, Kubiske ME, Sober J, Karnosky DF, Vapaavuori E (2004) Stem wood properties of Populus tremuloides, Betula papyrifera and Acer saccharum saplings after 3 years of treatments to elevated carbon dioxide and ozone. Glob Chang Biol 10:1513–1525CrossRefGoogle Scholar
  39. Kilpeläinen A, Peltola H, Ryyppö A, Sauvala K, Laitinen K, Kellomäki S (2003) Wood properties of Scots pines (Pinus sylvestris) grown at elevated temperature and carbon dioxide concentration. Tree Physiol 23:889–897PubMedCrossRefGoogle Scholar
  40. Kilpeläinen A, Peltola H, Ryyppö A, Kellomäki S (2005) Scots pine responses to elevated temperature and carbon dioxide concentration: growth and wood properties. Tree Physiol 25:75–83PubMedCrossRefGoogle Scholar
  41. Kilpeläinen A, Zubizarreta-Gerendiain A, Luostarinen K, Peltola H, Kellomäki S (2007) Elevated temperature and CO2 concentration effects on xylem anatomy of Scots pine. Tree Physiol 27:1329–1338PubMedCrossRefGoogle Scholar
  42. Kim K, Labbé N, Warren JM, Elder T, Rials TC (2015) Chemical and anatomical changes in Liquidambar styraciflua L. xylem after long-term exposure to elevated CO2. Environ Pollut 198:179–185PubMedCrossRefGoogle Scholar
  43. Kirdyanov AV, Vaganov E, Hughes MK (2007) Separating the climatic signal from tree-ring width and maximum latewood density records. Trees 21:37–44CrossRefGoogle Scholar
  44. Klironomos JN, Allen MF, Rillig MC, Piotrowski J, Makvandi-Nejad S, Wolfe B-E, Powell JR (2005) Abrupt rise in atmosheric CO2 overestimates community response in a model plant-soil system. Nature 433:621–624PubMedCrossRefGoogle Scholar
  45. Koike T, Watanabe M, Watanabe Y, Agathokleous E, Eguchi N, Takagi K, Satoh F, Kitaoka S, Funada R (2015) Ecophysiology of deciduous trees native to Northeast Asia grown under FACE (Free Air CO2 Enrichment). J Agric Meteorol 71:174–184CrossRefGoogle Scholar
  46. Koltzenburg C, Knigge W (1987) Holzeigenschaften von Buchen aus immissionsgeschädigten Beständen. Holz Roh-Werkstoff 45:267–272 (in German)CrossRefGoogle Scholar
  47. Kontunen-Soppela S, Lankila J, Lähdesmäki P, Laine K (2002) Response of protein and carbohydrate metabolism of Scots pine seedlings to low temperature. J Plant Physiol 159:175–180CrossRefGoogle Scholar
  48. Körner C (1988) Does global increase of CO2 alter stomatal density? Flora 181:253–257Google Scholar
  49. Körner C (2003) Carbon limitation in trees. J Ecol 91:4–17CrossRefGoogle Scholar
  50. Kostiainen K, Kaakinen S, Saranpää P, Sigurdsson BD, Linder S, Vapaavuori E (2004) Effect of elevated [CO2] on stem wood properties of mature Norway spruce grown at different soil nutrient availability. Glob Chang Biol 10:1526–1538CrossRefGoogle Scholar
  51. Kostiainen K, Kaakinen S, Warsta E, Kubiske ME, Nelson ND, Sober J, Karnosky DF, Saranpää P, Vapaavuori E (2008) Wood properties of trembling aspen and paper birch after 5 years of exposure to elevated concentrations of CO2 and O3. Tree Physiol 28:805–813PubMedCrossRefGoogle Scholar
  52. Kostiainen K, Kaakinen S, Saranpää P, Sigurdson BD, Lundqvist SO, Linder S, Vapaavuori E (2009) Stem wood properties of mature Norway spruce after 3 years of continuous exposure to elevated [CO2] and temperature. Glob Chang Biol 15:368–379CrossRefGoogle Scholar
  53. Kostiainen K, Saranpää P, Lundqvist S-O, Kubiske ME, Vapaavuori E (2014) Wood properties of Populus and Betula in long-term exposure to elevated CO2 and O3. Plant Cell Environ 37:1452–1463PubMedCrossRefGoogle Scholar
  54. Kürschner WM, Kvaček Z (2009) Oligocene-Miocene CO2 fluctuations, climatic and palaeofloristic trends inferred from fossil plant assemblages in central Europe. Bull Geosci 84:189–202CrossRefGoogle Scholar
  55. Larson PR (1994) The vascular cambium. Development and structure. Springer, BerlinCrossRefGoogle Scholar
  56. Lemoine D, Jacquemin S, Granier A (2002) Beech (Fagus sylvatica L.) branches show acclimation of xylem anatomy and hydraulic properties to increased light after thinning. Ann For Sci 59:761–766CrossRefGoogle Scholar
  57. Lhotáková Z, Urban O, Dubánková M, Cvikrová M, Tomášková I, Kubínová L, Zvára K, Marek MV, Albrechtová J (2012) The impact of long-term CO2 enrichment on sun and shade needles of Norway spruce (Picea abies): Photosynthetic performance, needle anatomy and phenolics accumulation. Plant Sci 188–189:60–70PubMedCrossRefGoogle Scholar
  58. Lin J, Jach ME, Ceulemans R (2001) Stomatal density and needle anatomy of Scots pine (Pinus sylvestris) are affected by elevated CO2. New Phytol 150:665–674CrossRefGoogle Scholar
  59. Liñán ID, Gutiérrez E, Heinrich I, Andreu-Hayles L, Muntán E, Campelo F, Helle G (2012) Age effects and climate response in trees: a multi-proxy tree-ring test in old-growth life stages. Eur J For Res 131:933–944CrossRefGoogle Scholar
  60. Liu X-P (2006) Impact of elevated pCO2 on mass flow of reduced nitrogen in trees. J Integr Plant Biol 48:1385–1390CrossRefGoogle Scholar
  61. Luo Y, Reynolds JF (1999) Validity of extrapolating field CO2 experiments to predict carbon sequestration in natural ecosystems. Ecology 80:1568–1583CrossRefGoogle Scholar
  62. Medlyn BE, Barton CVM, Broadmeadow MSJ (2001) Stomatal conductance of forest species after long-term exposure to elevated CO2 concentration: a synthesis of experimental data. New Phytol 149:247–264CrossRefGoogle Scholar
  63. Miller-Rushing AJ, Primack RB, Templer PH, Rathbone S, Mukunda S (2009) Long-term relationships among atmospheric CO2, stomata, and intrinsic water use efficiency in individual trees. Am J Bot 96:1779–1786PubMedCrossRefGoogle Scholar
  64. Morison JIL, Lawlor DW (1999) Interactions between increasing CO2 concentration and temperature on plant growth. Plant Cell Environ 22:659–682CrossRefGoogle Scholar
  65. Mousseau M, Enoch HZ (1989) Carbon dioxide enrichment reduces shoot growth in sweet chestnut seedlings (Castanea sativa Mill.). Plant. Cell Environ 12:927–934CrossRefGoogle Scholar
  66. Nabeshima E, Kubo T, Yasue K, Hiura T, Funada R (2015) Changes in radial growth of earlywood in Quercus crispula between 1970 and 2004 reflect climate change. Trees 29:1273–1281CrossRefGoogle Scholar
  67. Niinemets Ü, Díaz-Espejo A, Flexas J, Galmés J, Warren CR (2009) Role of mesophyll diffusion conductance in constraining potential photosynthetic productivity in the field. J Exp Bot 60:2249–2270PubMedCrossRefGoogle Scholar
  68. Ogaya R, Llorens L, Peñuelas J (2011) Density and length of stomatal and epidermal cells in ‘living fossil’ trees grown under elevated CO2 and a polar light regime. Acta Oecologia 37:381–385CrossRefGoogle Scholar
  69. Oksanen E, Riikonen J, Kaakinen S, Holopainen T, Vapaavuori E (2005) Structural characteristics and chemical composition of birch (Betula pendula) leaves are modified by increasing CO2 and ozone. Glob Chang Biol 11:732–748CrossRefGoogle Scholar
  70. Olszyk D, Apple M, Gartner B, Spicer R, Wise C, Buckner E, Benson-Scott A, Tingey D (2005) Xeromorphy increases in shoots of Pseudotsuga menziesii (Mirb.) Franco seedlings with exposure to elevated temperature but not elevated CO2. Trees 19:552–563CrossRefGoogle Scholar
  71. Overdieck D, Ungemach E (1989) Wirkungen der atmosphärischen Kohlendioxid-Anreicherung auf die Blattanatomie des Weißklees (Trifolium repens L.). Verhandlungen der Gesellschaft für Ökologie (Essen 1988), XVIII: 431–436 (in German, with English abstract)Google Scholar
  72. Overdieck D, Ziche D, Böttcher-Jungclaus K (2007) Temperature responses of growth and wood anatomy in European beech saplings grown in different carbon dioxide concentrations. Tree Physiol 27:261–268PubMedCrossRefGoogle Scholar
  73. Peñuelas J, Matamala R (1990) Changes in N and S leaf content, stomatal density and specific leaf area of 14 plant species during the last three centuries of CO2 increase. J Exp Bot 41:1119–1124CrossRefGoogle Scholar
  74. Poole I, Lawson T, Weyers JDB, Raven JA (2000) Effect of elevated CO2 on the stomatal distribution and leaf physiology of Alnus glutinosa. New Phytol 145:511–521CrossRefGoogle Scholar
  75. Poorter H, Niinemets Ü, Poorter L, Wright IJ, Villar R (2009) Causes and consequences of variation in leaf mass per area (LMA): a meta-analysis. New Phytol 182:565–588PubMedCrossRefGoogle Scholar
  76. Pritchard SG, Mosjidis C, Peterson CM, Runion GB, Rogers HH (1998) Anatomical and morphological alterations in longleaf pine needles resulting from growth in elevated CO2: Interactions with soil resource availability. Int J Plant Sci 159:1002–1009Google Scholar
  77. Pritchard SG, Rogers HH, Prior SA, Peterson CM (1999) Elevated CO2 and plant structure: a review. Glob Chang Biol 5:807–837CrossRefGoogle Scholar
  78. Pushnik JC, Demaree RS, Houpis JLJ, Flory WB, Bauer SM, Anderson PD (1995) The effect of elevated carbon dioxide on a Sierra-Nevadan dominant species: Pinus ponderosa. J Biogeogr 22:249–254CrossRefGoogle Scholar
  79. Radoglou KM, Jarvis PG (1990) Effects of CO2 enrichment on four poplar clones. I. Growth and leaf anatomy. Ann Bot 65:617–626Google Scholar
  80. Rashidi F, Jalili A, Kafaki SB, Sagheb-Tabeli K, Hodgson J (2012) Anatomical responses of leaves in Black Locust (Robinia pseudoacacia L.) to urban pollutant gases and climatic factors. Trees 26:363–375CrossRefGoogle Scholar
  81. Reid CD, Maherali H, Johnson HB Smith SD, Wullschleger SD, Jackson RB (2003) On the relationship between stomatal characters and atmospheric CO2. Geophys Res Lett 30. doi: 10.1029/2003GL017775
  82. Rengifo E, Urich R, Herrera A (2002) Water relations and leaf anatomy of the tropical species, Jatropa gossypifolia and Alternanthera crucis, grown under elevated CO2 concentration. Photosynthetica 40:397–403CrossRefGoogle Scholar
  83. Richet N, Afif D, Tozo K, Pollet B, Maillard P, Huber F, Priault P, Banvoy J, Gross P, Dizengremel P, Lapierre C, Perré P, Cabané M (2012) Elevated CO2 and/or ozone modify lignification in the wood of poplars (Populus tremula x alba). J Exp Bot 63:4291–4301PubMedPubMedCentralCrossRefGoogle Scholar
  84. Rigling A, Bruhlhart H, Braker OU, Forster T, Schweingruber FH (2003) Effects of irrigation on diameter growth and vertical resin duct production in Pinus sylvestris L. on dry sites in the central Alps, Switzerland. For Ecol Manag 175:285–296CrossRefGoogle Scholar
  85. Roderick ML, Berry S (2001) Linking wood density with tree growth and environment: a theoretical analysis based on the motion of water. New Phytol 149:473–485CrossRefGoogle Scholar
  86. Rogers HH, Bingham GE, Cure JD, Smith JM, Surano KA (1983) Responses of selected plant species to elevated carbon dioxide in the field. J Environ Qual 12:569–574CrossRefGoogle Scholar
  87. Roth-Nebelsick A (2005) Reconstructiing atmospheric carbon dioxide with stomata: possibilities and limitations of a botanical pCO2-sensor. Trees 19:251–265CrossRefGoogle Scholar
  88. Royer DL (2001) Stomatal density and stomatal index as indicators of palaeoatmospheric CO2 concentration. Rev Palaeobot Palynol 114:1–28PubMedCrossRefGoogle Scholar
  89. Scarascia-Mugnozza G, De Angelis P (1998) Is water used more efficiently? In: Jarvis PG [ed; assisted by Aitken A.M… (et al.)]: European forests and global change. The likely impacts of rising CO2 and temperature. Cambridge University Press, Cambridge, UK, pp 192–214Google Scholar
  90. Smith RA, Lewis JD, Ghannoum O, Tissue DT (2012) Leaf structural responses to pre-industrial, current and elevated atmospheric [CO2] and temperature affect leaf function in Eucalyptus sideroxylon. Funct Plant Biol 39:285–296CrossRefGoogle Scholar
  91. Telewski FW, Swanson RT, Strain BR, Bruns JM (1999) Wood properties and ring width responses to long-term atmospheric CO2 enrichment in field-grown loblolly pine (Pinus taeda L.). Plant Cell Environ 22:213–219CrossRefGoogle Scholar
  92. Thomas DS, Montagu KD, Conroy JP (2004) Changes in wood density of Eucalyptus camaldulensis due to temperature – the physiological link between water viscosity and wood anatomy. For Ecol Manag 193:157–165CrossRefGoogle Scholar
  93. Tognetti R, Cherubini P, Innes JL (2000) Comparative stem-growth rates of Mediterranean trees under background and naturally enhanced ambient CO2 concentrations. New Phytol 146:59–74CrossRefGoogle Scholar
  94. Uggla C, Magel E, Moritz T, Sundberg B (2001) Function and dynamics of auxin and carbohydrates during earlywood/latewood transition in Scots pine. Plant Physiol 125:2029–2039PubMedPubMedCentralCrossRefGoogle Scholar
  95. van Hoof TB, Kürschner WM, Wagner F, Visscher H (2006) Stomatal index response of Quercus robur and Quercus petraea to the anthropogenic atmospheric CO2 increase. Plant Ecol 183:237–243CrossRefGoogle Scholar
  96. Vaz M, Cochard H, Gazarini L, Garça J, Chaves MM, Pereira JS (2012) Cork oak (Quercus suber L.) seedlings acclimate to elevated CO2 and water stress: photosynthesis, growth, wood anatomy and hydraulic conductivity. Trees 26:1145–1157CrossRefGoogle Scholar
  97. Vila B, Vennetier M, Ripert C, Chandioux O, Liang E, Guibal F, Torre F (2008) Has global change induced divergent trends in radial growth of Pinus sylvestris and Pinus halepensis at their bioclimatic limit? The example of Sainte-Baume forest (south-east France). Ann Sci For 65:709–717CrossRefGoogle Scholar
  98. Voelker SL, Muzika RM, Guyette RP, Stambaugh MC (2006) Historical CO2 growth enhancement declines with age in Quercus and Pinus. Ecol Monogr 76:549–564CrossRefGoogle Scholar
  99. Wagner F, Dilcher DL, Visscher H (2005) Stomatal frequency responses in hardwood-swamp vegetation from Florida during a 60-year continuous CO2 increase. Am J Bot 92:690–695PubMedCrossRefGoogle Scholar
  100. Watanabe Y, Tobita H, Kitao M, Maruyama Y, Choi DS, Sasa K, Funada R, Koike T (2008) Effects of elevated CO2 and nitrogen on wood structure related to water transport in seedlings of two deciduous broad-leaved tree species. Trees 22:403–411CrossRefGoogle Scholar
  101. Watanabe Y, Satomura T, Sasa K, Funada R, Koike T (2010) Differential anatomical responses to elevated CO2 in saplings of four hardwood species. Plant Cell Environ 33:1101–1111PubMedGoogle Scholar
  102. Wimmer R, Grabner M, Strumia G, Sheppard PR (1999) Significance of vertical resin ducts in tree rings of spruce. In: Wimmer R, Vetter RE (eds) Tree-ring analysis. Biological, methodological and environmental aspects. CABI Publishing, Oxford, pp 33–54Google Scholar
  103. Woodward FI (1987) Stomatal numbers are sensitive to increases in CO2 from preindustrial levels. Nature 327:617–618CrossRefGoogle Scholar
  104. Wooward FI (1993) Plant responses to past concentrations of CO2. Vegetatio 104(105):145–155CrossRefGoogle Scholar
  105. Yazaki K, Funada R, Mori S, Maruyama Y, Abaimov AP, Kayama M, Koike T (2001) Growth and annual ring structure of Larix sibirica grown at different carbon dioxide concentrations and nutrient supply rates. Tree Physiol 21:1223–1229PubMedCrossRefGoogle Scholar
  106. Yazaki K, Ishida S, Kawagishi T, Fukatsu E, Maruyama Y, Kitao M, Tobita H, Koike T, Funada R (2004) Effects of elevated CO2 concentration on growth, annual ring structure and photosynthesis in Larix kaempferi seedlings. Tree Physiol 24:941–949CrossRefGoogle Scholar
  107. Zamski E (1972) Temperature and photoperiodic effects on xylem and vertical resin duct formation in Pinus halepensis. Isr J Bot 21:99–107Google Scholar
  108. Ziche D (2008) Klimabedingte Variationen anatomischer Holzeigenschaften der Waldkiefer (Pinus sylvestris L.) unter Berücksichtigung eines Anstiegs der atmosphärischen CO2-Konzentration. dissertation, TU-Berlin, Germany, pp 1–114 (in German)Google Scholar
  109. Ziche D, Overdieck D (2004) CO2 and temperature effects on growth, biomass production, and stem wood anatomy of juvenile Scots pine (Pinus sylvestris L.). J Appl Bot 78:120–132Google Scholar

Copyright information

© Springer Science+Business Media Singapore 2016

Authors and Affiliations

  • Dieter Overdieck
    • 1
  1. 1.Institute of Ecology, Ecology of Woody PlantsTechnical University of BerlinBerlinGermany

Personalised recommendations