Skip to main content

Secondary Metabolites

  • Chapter
  • First Online:
CO2, Temperature, and Trees

Part of the book series: Ecological Research Monographs ((ECOLOGICAL))

  • 871 Accesses

Abstract

Emissions of volatile organic compounds from the leaf surface back to the atmosphere under elevated [CO2] and temperature are discussed with respect to carbon losses. Furthermore, it is shown that chlorophyll contents only decrease significantly at elevated [CO2] if root growth is restricted by the amount of substrate. Early indications of influences on phenolics are given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arneth A, Niinemets Ãœ, Pressley S, Bäck J, Hari P, Karl T, Noe S, Prentice IC, Serça D, Hickler T, Wolf A, Smith B (2007) Process-based estimates of terrestrial ecosystem isoprene emissions: incorporating the effects of a direct CO2-isoprene interaction. Atmos Chem Phys 7:31–53

    Article  CAS  Google Scholar 

  • Arneth A, Schurgers G, Hickler T, Miller PA (2008) Effects of species composition, land surface cover, CO2 concentration and climate on isoprene emissions from European forests. Plant Biol 10:150–162

    Article  CAS  PubMed  Google Scholar 

  • Besford RT, Mousseau M, Matteucci G (1998) Biochemistry, physiology and biophysics of photosynthesis. In: Jarvis PG (ed) European forests and global change. The likely impacts of rising CO2 and temperature. Cambridge University Press, Cambridge, pp 29–78

    Google Scholar 

  • Constable JVH, Litvak ME, Greenberg JP, Monson RK (1999) Monoterpene emission from coniferous trees in response to elevated CO2 concentration and climate warming. Glob Chang Biol 5:255–267

    Google Scholar 

  • Eamus D, Duff GA, Berryman CA (1995) Photosynthetic responses to temperature, light flux-density, CO2 concentration and vapour pressure deficit in Eucalyptus tetrodonta grown under CO2 enrichment. Environ Pollut 90:41–49

    Article  CAS  PubMed  Google Scholar 

  • Epron D, Liozon R, Mousseau M (1996) Effects of elevated CO2 concentration on leaf characteristics and photosynthesis capacity of beech (Fagus sylvatica) during the growing season. Tree Physiol 16:425–432

    Article  CAS  PubMed  Google Scholar 

  • Gleeson SK, Tilman D (1991) Plant allocation and the multiple limitation hypothesis. Am Nat 139:1322–1343

    Article  Google Scholar 

  • Guidolotti G, Calfapietra C, Loreto F (2011) The relationship between isoprene emission, CO2 assimilation and water use efficiency across a range of poplar genotypes. Physiol Plant 142:297–304

    Article  CAS  PubMed  Google Scholar 

  • Harrison SP, Morfopoulos C, Dani KGS, Prentice IC, Arneth A, Atwell BJ, Barkley MP, Leisman MR, Loreto F, Medlyn BE, Niinemets Ãœ, Possell M, Penuelas J, Wright IJ (2013) Volatile isoprenoid emissions from plastid to planet. New Phytol 197:49–57

    Article  CAS  PubMed  Google Scholar 

  • Hirano A, Hongo I, Koike T (2012) Morphological and physiological responses of Siebold’s beech (Fagus crenata) seedlings grown under CO2 concentrations ranging from pre-industrial to expected future levels. Landsc Ecol Eng 8:59–67

    Article  Google Scholar 

  • Holzinger R, Sandoval-Soto L, Rottenberger S, Crutzen PJ, Kesselmeier J (2000) Emission of volatile organic compounds from Quercus ilex L. measured by Proton Transfer Reaction Mass spectrometry (PTR-MS) under different environmental conditions. J Geophys Res 105(D 16):20573–20579

    Article  CAS  Google Scholar 

  • Kanowski J (2001) Effects of elevated CO2 on the foliar chemistry of seedlings of two rainforest trees from north-east Australia: implications for folivorous marsupials. Aust Ecol 26:165–172

    Article  Google Scholar 

  • Keutgen N, Chen K (2001) Responses of citrus leaf photosynthesis, chlorophyll fluorescence, macronutrient and carbohydrate contents to elevated CO2. J Plant Physiol 158:1307–1316

    Article  CAS  Google Scholar 

  • Kreuzwieser J, Cojocariu C, Jüssen V, Rennenberg H (2002) Elevated atmospheric CO2 causes seasonal changes in carbonyl emissions from Quercus ilex. New Phytol 154:327–333

    Article  CAS  Google Scholar 

  • Li D, Chen Y, Shi Y, He X, Chen X (2009) Impact of elevated CO2 and O3 concentrations on biogenic volatile organic compounds emissions from Ginkgo biloba. Bull Environ Contam Toxicol 82:473–477

    Article  CAS  PubMed  Google Scholar 

  • Logan BA, Hricko CR, Lewis JD, Ghannoum O, Phillips NG, Smith R, Conroy JP, Tissue DT (2010) Examination of pre-industrial and future [CO2] reveals the temperature-dependent CO2 sensitivity of light energy partitioning at PS II in eucalypts. Funct Plant Biol 37:1041–1049

    Article  Google Scholar 

  • Loreto F, Fischbach RJ, Schnitzler J-P, Ciccioli P, Brancaleoni E, Calfapietra C, Seufert G (2001) Monoterpene emission and monoterpene synthase activities in the Mediterranean evergreen oak Quercus ilex L. grown at elevated CO2 concentrations. Glob Chang Biol 7:709–717

    Article  Google Scholar 

  • Ormrod DP, Lesser M, Olszyk DM, Tingey DT (1999) Elevated temperature and carbon dioxide affect chlorophylls and carotenoids in Douglas-fir seedlings. Int J Plant Sci 16:529–534

    Article  Google Scholar 

  • Pegoraro E, Rey A, Bobich EG, Barron-Gafford G, Grieve KA, Malhi Y, Murthy R (2004) Effect of elevated CO2 concentration and vapor pressure deficit on isoprene emission from leaves of Populus deltoides during drought. Funct Plant Biol 31:1137–1147

    Article  CAS  Google Scholar 

  • Pegoraro E, Abrell L, van Haren J, Barron-Gafford G, Grieve KA, Malhi Y, Murthy R, Lin G (2005) The effect of elevated atmospheric CO2 and drought on sources and sinks of isoprene in a temperate and tropical rainforest mesocosm. Glob Chang Biol 11:1234–1246

    Article  Google Scholar 

  • Possell M, Hewitt CN (2011) Isoprene emissions from plants are mediated by atmospheric CO2 concentrations. Glob Chang Biol 17:1595–1610

    Article  Google Scholar 

  • Rapparini F, Baraldi R, Miglietta F, Loreto F (2004) Isoprenoid emission in trees of Quercus pubescens and Quercus ilex with lifetime exposure to naturally high CO2 environment. Plant Cell Environ 27:381–391

    Article  CAS  Google Scholar 

  • Reining E (1991) Langzeiteffekte von erhöhtem CO2-Angebot auf den Mineralstoffhaushalt von Acer pseudoplatanus und Fagus sylvatica. Dissertation, University of Osnabrück, Germany, pp 1–110 (in German)

    Google Scholar 

  • Rosenstiel TN, Potosnak MJ, Griffin KL, Fall R, Monson RK (2003) Increased CO2 uncouples growth from isoprene emission in an agriforest ecosystem. Nature 412:256–259

    Article  Google Scholar 

  • Sharkey TD, Loreto F, Delwiche CF (1991) High carbon dioxide and sun/shade effects on isoprene emissions from oak and aspen tree leaves. Plant Cell Environ 14:333–338

    Article  CAS  Google Scholar 

  • Staudt M, Joffre R, Rambal S, Kesselmeier J (2001) Effect of elevated CO2 on monoterpene emission of young Quercus ilex trees and its relation to structural and ecophysiological parameters. Tree Physiol 21:437–445

    Article  CAS  PubMed  Google Scholar 

  • Stylinski CD, Oechel WC, Gamon JA, Tissue DT, Miglietta F, Raschi A (2000) Effects of lifelong [CO2] enrichment on carboxylation and light utilization of Quercus pubescens Willd., examined with gas exchange, biochemistry, and optical techniques. Plant Cell Environ 23:1353–1362

    Article  CAS  Google Scholar 

  • Thomas SC (2005) Increased leaf reflectance in tropical trees under elevated CO2. Glob Change Biol 11:197–202

    Article  Google Scholar 

  • Wang KY, Kellomäki S, Zha T (2003) Modification in photosynthetic pigments and chlorophyll fluorescence in 20-year-old pine trees after a four-year exposure to carbon dioxide and temperature elevation. Photosynthetica 41:167–175

    Article  CAS  Google Scholar 

  • Wang J, Duan B, Zhang Y (2012) Effects of experimental warming on growth, biomass allocation, and needle chemistry of Abies faxoniana in even-aged monospecific stands. Plant Ecol 213:47–55

    Article  Google Scholar 

  • Way DA, Schnitzler J-P, Monson RK, Jackson RB (2011) Enhanced isoprene-related tolerance of heat- and light-stressed photosynthesis at low, but not high, CO2 concentrations. Oecologia 166:273–282

    Article  PubMed  Google Scholar 

  • Wilkins D, van Oosten J-J, Besford RT (1994) Effects of elevated CO2 on growth and chloroplast proteins in Prunus avium. Tree Physiol 14:769–779

    Article  CAS  PubMed  Google Scholar 

  • Xu S, Chen W, Huang Y, He X (2012) Responses of growth, photosynthesis and VOC emissions of Pinus tabulaeformis Carr. Exposure to elevated CO2 and/or elevated O3 in an urban area. Bull Environ Contam Toxicol 88:443–448

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Overdieck, D. (2016). Secondary Metabolites. In: CO2, Temperature, and Trees. Ecological Research Monographs. Springer, Singapore. https://doi.org/10.1007/978-981-10-1860-2_7

Download citation

Publish with us

Policies and ethics