Advertisement

CO2 Net Assimilation of Leaves

  • Dieter Overdieck
Chapter
Part of the Ecological Research Monographs book series (ECOLOGICAL)

Abstract

Dependencies of CO2 net assimilation rates of leaves on the variables [CO2], light (photosynthetic photon flux density), air temperature, and nitrogen are quantified by means of examples. Factors that enhance the effects of increasing [CO2] are compiled. A new function describes the three-dimensional relationship among [CO2], temperature, and CO2 net assimilation of leaves. Partial acclimation of CO2 net assimilation (photosynthesis) to increasing [CO2] is proved and discussed.

Keywords

Intercellular CO2 concentration CO2 enhancement factors Photosynthetic photon flux density Leaf temperature Nitrogen Maximum carboxylation efficiency 

References

  1. Ainsworth EA, Rogers A (2007) The response of photosynthesis and stomatal conductance to rising [CO2]: mechanisms and environmental interactions. Plant Cell Environ 30:258–270CrossRefPubMedGoogle Scholar
  2. Ambebe TF, Dang Q-L (2009) Low moisture availability inhibits the enhancing effect of increased soil temperature on net photosynthesis of white birch (Betula papyrifera) seedlings grown under ambient and elevated carbon dioxide concentrations. Tree Physiol 29:1341–1348CrossRefPubMedGoogle Scholar
  3. Aranda X, Augusti C, Joffre R, Fleck I (2006) Photosynthesis, growth and structural characteristics of holm oak resprouts originated from plants grown under elevated CO2. Physiol Plant 128:302–312CrossRefGoogle Scholar
  4. Bader MK-F, Siegwolf R, Körner C (2010) Sustained enhancement of photosynthesis in mature deciduous forest trees after 8 years of free air CO2 enrichment. Planta 232:1115–1125CrossRefPubMedGoogle Scholar
  5. Barker DH, Loveys BR, Egerton JJG, Gorton H, Williams WE, Ball MC (2005) CO2 enrichment predisposes foliage of a eucalypt to freezing injury and reduces spring growth. Plant Cell Environ 28:1506–1515CrossRefGoogle Scholar
  6. Bauerle WL, Bowden JD, Wang GG (2007) The influence of temperature on within–canopy acclimation and variation in leaf photosynthesis: spatial acclimation to microclimate gradients among climatically divergent Acer rubrum L. genotypes. J Exp Bot 58:3285–3298CrossRefPubMedGoogle Scholar
  7. Besford RT, Mousseau M, Matteucci G (1998) Biochemistry, physiology and biophysics of photosynthesis. In: Jarvis PG (ed) European forests and global change. The likely impacts of rising CO2 and temperature. Cambridge University Press, Cambridge, pp 29–78Google Scholar
  8. Cernusak LA, Winter K, Martinez C, Correa E, Aranda J, Garcia M, Jaramillo C, Turner BL (2011) Responses of legume versus nonlegume tropical tree seedlings to elevated CO2 concentration. Plant Physiol 157:372–385CrossRefPubMedPubMedCentralGoogle Scholar
  9. Ceulemans R, Taylor G, Bosac C, Wilkins D, Besford R (1997) Photosynthetic acclimation to elevated CO2 in poplar grown in glasshouse cabinets or in open top chambers depends on duration of exposure. J Exp Bot 48:1681–1689CrossRefGoogle Scholar
  10. Curtis PS, Wang X (1998) A meta-analysis of elevated CO2 effects on woody plant mass, form, and physiology. Oecologia 113:299–313CrossRefGoogle Scholar
  11. DeLucia EH, Thomas RB (2000) Photosynthetic responses to CO2 enrichment of four hardwood species in a forest understory. Oecologia 122:11–19CrossRefGoogle Scholar
  12. Dreyer E, LeRoux X, Montpied P, Daudet FA, Masson F (2001) Temperature response of leaf photosynthetic capacity in seedlings from seven temperate tree species. Tree Physiol 21:223–232CrossRefPubMedGoogle Scholar
  13. Eamus D, Jarvis PG (1989) The direct effects of increase in the global atmospheric CO2 concentration on natural and commercial temperate trees and forests. Adv Ecol Res 19:1–55CrossRefGoogle Scholar
  14. Eguchi N, Karatsu K, Ueda T, Funada R, Takagi K, Hiura T, Sasa K, Koike T (2008) Photosynthetic responses of birch and alder saplings grown in a free air CO2 enrichment system in Northern Japan. Trees 22:437–447CrossRefGoogle Scholar
  15. Ellsworth DS, LaRoche J, Hendrey GR (1998) Elevated CO2 in a prototype free air CO2 enrichment facility affects photosynthetic capacity nitrogen relations in a maturing pine forest. Brookhaven National Labs, Upton, Long Island, New York, USA Report BNL 52545, pp 1–45Google Scholar
  16. Evans JR (1989) Photosynthesis and nitrogen relationships in leaves of C3 plants. Oecologia 78:9–19CrossRefGoogle Scholar
  17. Farquhar GD, von Caemmerer S, Berry JA (1980) A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149:78–90CrossRefPubMedGoogle Scholar
  18. Field C, Mooney HA (1986) The photosynthesis-nitrogen relationship in wild plants. In: Givinsh TJ (ed) On the economy of form and function. Cambridge University Press, Cambridge, pp 25–55Google Scholar
  19. Forstreuter M (2001) Auswirkungen globaler Klimaänderungen auf das Wachstum und den Gaswechsel (CO2/H2O) von Rotbuchenbeständen (Fagus sylvatica L.). Habilitationsschrift (in German with English abstract), TU-Berlin, Germany, pp 115–120, 180–183Google Scholar
  20. Freeman M (1998) Leaf gas exchange in mature beech (Fagus sylvatica L.) exposed to longterm elevated CO2 in branch bags. Ph.D. thesis, Royal Veterinary and Agricultural University, DenmarkGoogle Scholar
  21. Griffin KL, Tissue DT, Turnbull MH, Whitehead D (2000) The onset of photosynthetic acclimation to elevated CO2 partial pressure in field–grown Pinus radiata D. Don. after 4 years. Plant Cell Environ 23:1089–1098CrossRefGoogle Scholar
  22. Gunderson CA, Norby RJ, Wullschleger SD (1993) Foliar gas exchange responses of two deciduous hardwoods during 3 years of growth in elevated CO2: No loss of photosynthetic enhancement. Plant Cell Environ 16:797–807CrossRefGoogle Scholar
  23. Hättenschwiler S (2001) Tree seedling growth in natural deep shade: functional traits related to interspecific variation in response to elevated CO2. Oecologia 129:31–42CrossRefGoogle Scholar
  24. Herrick JD, Thomas RB (2001) No photosynthetic down-regulation in sweetgum trees (Liquidambar styraciflua L.) after three years of CO2 enrichment at the Duke Forest FACE experiment. Plant Cell Environ 24:53–69CrossRefGoogle Scholar
  25. Hollinger DY (1996) Optimality and nitrogen allocation in a tree canopy. Tree Physiol 16:627–634CrossRefPubMedGoogle Scholar
  26. Idso SB, Kimball BA (1993) Effects of atmospheric carbon dioxide enrichment on net photosynthesis and dark respiration rates of three Australian tree species. J Plant Physiol 141:166–171CrossRefGoogle Scholar
  27. Jach ME, Ceulemans R (2000) Effects of season, needle age and elevated atmospheric CO2 on photosynthesis in Scots pine (Pinus sylvestris). Tree Physiol 20:145–157CrossRefPubMedGoogle Scholar
  28. Kellomäki S, Wang K-Y (1997) Photosynthetic responses of Scots pine to elevated CO2 and nitrogen supply: results of a branch-in-bag experiment. Tree Physiol 17:231–240CrossRefPubMedGoogle Scholar
  29. Kerstiens G (2001) Meta-analysis of the interaction between shade-tolerance, light environment and growth response of woody species to elevated CO2. Acta Oecol 22:61–69CrossRefGoogle Scholar
  30. Körner C (1995) Towards a better experimental basis for upscaling plant responses to elevated CO2 and climate warming. Plant Cell Environ 18:1101–1110CrossRefGoogle Scholar
  31. Kositsup B, Montpied P, Kasemsap P, Thaler P, Améglio T, Dreyer E (2009) Potosynthetic capacity and temperature responses of photosynthesis of rubber trees (Hevea brasiliensis Müll. Arg.) acclimate to changes in ambient temperatures. Trees 23:357–365CrossRefGoogle Scholar
  32. Kubiske ME, Pregitzer KS (1996) Effects of elevated CO2 and light availability on the photosynthetic light response of trees of contrasting shade tolerance. Tree Physiol 16:351–358CrossRefPubMedGoogle Scholar
  33. Küppers M, Häder DP (1999) Methodik der Photosyntheseforschung – Messung und Interpretation des CO2-Gasaustausches von intakten Blättern. In: Häder DP (ed) Photosynthese. Thieme, Stuttgart, pp 21–47 (in German)Google Scholar
  34. Lemon ER (ed) (1983) CO2 and plants. AAS Selected Symposium 84, Westview Press, Boulder, pp 1–280Google Scholar
  35. Leverenz JW (1987) Chlorophyll content and the light response curve of shade–adapted conifer needles. Physiol Plant 71:20–29CrossRefGoogle Scholar
  36. Lewis JD, Lucash M, Olszyk DM, Tingey DT (2001) Seasonal patterns of photosynthesis in Douglas-fir seedlings during the third and fourth year of exposure to elevated carbon dioxide and temperature. Plant Cell Environ 24:539–548CrossRefGoogle Scholar
  37. Lloyd J, Farquhar GD (2008) Effects of rising temperatures and [CO2] on the physiology of tropical forest trees. Philos Trans R Soc 363:1811–1817CrossRefGoogle Scholar
  38. Long SP (1991) Modification of the response of photosynthetic productivity to rising temperature by atmospheric CO2 concentrations: has its importance been underestimated? Plant Cell Environ 14:729–739CrossRefGoogle Scholar
  39. Long SP, Drake BG (1991) Effects of the long-term elevation of CO2 concentration in the field on quantum yield of photosynthesis of the C3 sedge Scirpus olneyi. Plant Physiol 96:221–226CrossRefPubMedPubMedCentralGoogle Scholar
  40. Loveys BR, Egerton JJG, Ball MC (2006) Higher daytime temperatures contribute to lower freeze tolerance under elevated CO2. Plant Cell Environ 29:1077–1086CrossRefPubMedGoogle Scholar
  41. Medlyn BE, Badeck FW, de Pury DG, Barton CV, Broadmeadow M, Ceulemans R, de Angelis P, Forstreuter M, Jach ME, Kellomäki S, Laitat E, Marek MV, Philippot S, Rey A, Strassemeyer J, Laitinen K, Jarvis PG (1999) Effects of elevated [CO2] on photosynthesis in European forest species: a meta-analysis of model-parameters. Plant Cell Environ 22:1475–1495CrossRefGoogle Scholar
  42. Morison JIL, Lawlor DW (1999) Interactions between increasing CO2 concentration and temperature on plant growth. Plant Cell Environ 22:659–682CrossRefGoogle Scholar
  43. Norby RJ, Wullschleger SD, Gunderson CA, Johnson DW, Ceulemans R (1999) Tree responses to rising CO2 in field experiments: implications for the future forest. Plant Cell Environ 22:683–714CrossRefGoogle Scholar
  44. Oren R, Ellsworth DS, Johnsen KH, Phillips N, Ewers BE, Maier C, Schäfer KVR, McCarthy H, Hendrey G, McNulty SG, Katul GG (2001) Soil fertility limits carbon sequestration by forest ecosystems in a CO2-enriched atmosphere. Nature 411:469–472CrossRefPubMedGoogle Scholar
  45. Osborne CP, Drake BG, LaRoche J, Long SP (1997) Does long-term elevation of CO2 concentration increase photosynthesis in forest floor vegetation? Plant Physiol 114:337–344CrossRefPubMedPubMedCentralGoogle Scholar
  46. Overdieck D (1989) The effects of preindustrial and predicted future atmospheric CO2 concentration on Lyonia mariana L.D. Don. Funct Ecol 3:569–576CrossRefGoogle Scholar
  47. Overdieck D, Strassemeyer J (2005) Gas exchange of Gingko biloba leaves at different CO2 concentration levels. Flora 200:159–167CrossRefGoogle Scholar
  48. Pearcy RW, Troughton J (1975) C4 photosynthesis in tree form Euphorbia species from Hawaiian rainforest sites. Plant Physiol 55:1054–1056CrossRefPubMedPubMedCentralGoogle Scholar
  49. Peterson AG, Ball JT, Luo Y, Field CB, Curtis PS, Griffin KL, Gunderson CA, Norby RJ, Tissue DT, Forstreuter M, Rey A, Vogel CS (1999) Quantifying the response of photosynthesis to changes in leaf nitrogen content and leaf mass per area in plants grown under atmospheric CO2 enrichment. Plant Cell Environ 22:998–1109CrossRefGoogle Scholar
  50. Possel M, Hewitt CN (2009) Gas exchange and photosynthetic performance of the tropical tree Acacia nigrescens when grown in different CO2 concentrations. Planta 229:837–846CrossRefGoogle Scholar
  51. Reich PB, Walters MB, Ellworth DS, Uhl C (1994) Photosynthesis-nitrogen relations in Amazonian tree species. I. Patterns among species and communities. Oecologia 97:62–72CrossRefGoogle Scholar
  52. Sage RF (2004) The evolution of C4 photosynthesis. New Phytol 161:341–370CrossRefGoogle Scholar
  53. Stitt M (1991) Rising CO2 levels and their potential significance of carbon flow in photosynthetic cells. Plant Cell Environ 14:741–762CrossRefGoogle Scholar
  54. Strain BR, Cure JD (1985) Direct effects of increasing carbon dioxide on vegetation. US DOE/ER-0238, DurhamGoogle Scholar
  55. Strassemeyer J (2002) Gaswechsel (CO2/H2O) von Eichenbeständen (Quercus robur L.) unter erhöhter atmosphärischer CO2-Konzentration. Dissertation, TU-Berlin, Germany, pp 98–99, 120–123 (in German, with English abstract)Google Scholar
  56. Strassemeyer J, Forstreuter M, Overdieck D. (1997) Temperatur- und CO2-Abhängigkeit des Gaswechsels von Fagus sylvatica L. nach Wachstum unter erhöhter atmosphärischer CO2-Konzentration. Verhandlungen der Gesellschaft für Ökologie 27:303–309 (in German, with English abstract)Google Scholar
  57. Stylinski CD, Oechel WC, Gamon JA, Tissue DT, Miglietta F, Raschi A (2000) Effects of lifelong [CO2] enrichment on carboxylation and light utilization of Quercus pubescens Willd., examined with gas exchange, biochemistry, and optical techniques. Plant Cell Environ 23:1353–1362CrossRefGoogle Scholar
  58. Tissue DT, Griffin KL, Ball JT (1999) Photosynthetic adjustment in field-grown Ponderosa pine trees after six years of exposure to elevated CO2. Tree Physiol 19:221–228CrossRefPubMedGoogle Scholar
  59. Tognetti R, Sebastiani L, Vitagliano C, Raschi A, Minnoci A (2001) Responses of two olive tree (Olea europea L.) cultivars to elevated CO2 concentration in the field. Photosynthetica 39:403–410CrossRefGoogle Scholar
  60. Tolbert NE, Zelitch I (1983) Carbon metabolism. In: Lemon ER (ed) CO2 and plants. The response of plants to rising levels of atmospheric carbon dioxide. Westview Press, Boulder, pp 21–64Google Scholar
  61. Urban O (2003) Physiological impacts of elevated CO2 concentration ranging from molecular to whole plant responses. Photosynthetica 41:9–20CrossRefGoogle Scholar
  62. Valentini R, Epron D, De Angelis R, Matteucci G, Dreyer E (1995) In situ estimation of net assimilation, photosynthetic electron flow and photorespiration in Turkey oak (Q. cerris L.) leaves: diurnal cycles under different levels of water supply. Plant Cell Environ 18:631–640CrossRefGoogle Scholar
  63. von Caemmerer S, Farquhar GD (1981) Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves. Planta 153:376–387CrossRefGoogle Scholar
  64. Wang X-W, Zhao M, Mao S-Y, Zhang D-L, Zhao X-Z (2008) Combination of elevated CO2 concentration and elevated temperature only promote photosynthesis of Quercus mongolica seedlings. Russ J Plant Physiol 55:54–58CrossRefGoogle Scholar
  65. Warren CR (2008) Does growth temperature affect the temperature responses of photosynthesis and internal conductance to CO2? A test with Eucalyptus regnans. Tree Physiol 28:11–19CrossRefPubMedGoogle Scholar
  66. Warren CR, Deyer E (2006) Temperature response of photosynthesis and internal conductance to CO2: results from two independent approaches. J Exp Bot 57:3057–3067CrossRefPubMedGoogle Scholar
  67. Way DA, Sage RF (2008) Elevated growth temperatures reduce the carbon gain of black spruce [Picea mariana (Mill.) B.S.P.]. Glob Chang Biol 14:624–636CrossRefGoogle Scholar
  68. Zhang JL, Meng LZ, Cao KF (2008) Sustained diurnal photosynthetic depression in uppermost-canopy leaves of four dipterocarp species in the rainy and dry seasons: does photorespiration play a role in photoprotection? Tree Physiol 29:217–228CrossRefPubMedGoogle Scholar
  69. Zhou YM, Wang CG, Han SJ, Cheng XB, Li MH, Fan AN, Wang XX (2011) Species-specific and needle age-related responses of photosynthesis in two Pinus species to long-term exposure to elevated CO2 concentration. Trees 25:163–173CrossRefGoogle Scholar
  70. Ziska LH, Hogan KP, Smith AP, Drake BG (1991) Growth and photosynthetic response of nine tropical species with long-term exposure to elevated carbon dioxide. Oecologia 86:383–389CrossRefGoogle Scholar
  71. Zotz G, Pepin S, Körner C (2005) No down-regulation of leaf photosynthesis in mature forest trees after three years of exposure to elevated CO2. Plant Biol 7:369–374CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Singapore 2016

Authors and Affiliations

  • Dieter Overdieck
    • 1
  1. 1.Institute of Ecology, Ecology of Woody PlantsTechnical University of BerlinBerlinGermany

Personalised recommendations