Expanding the Outlook to Effects on Ecosystems

  • Dieter Overdieck
Part of the Ecological Research Monographs book series (ECOLOGICAL)


Mixed results are shown for the leaf area index of small, dense stands of young deciduous trees in soil-litter-plant enclosures (model ecosystems) at elevated [CO2]. More living biomass is accumulated each year over up to 6 years of growth at almost doubled ambient [CO2]. Examples of daily courses of CO2 gas exchange rates of these stands and canopy gross photosynthesis are calculated by means of the net CO2 gas exchange and dark respiration rates of the whole soil-litter-plant systems under unchanged ambient and elevated [CO2]. System total respiration is shown in response to changes in soil temperature, and selected daily courses illustrate the comparison of total system CO2 gross uptake with the total system and leaf dark respiration. All measured daily courses of system CO2 net assimilation are combined into monthly averages for one experimental year. This shows that the effect of elevated [CO2] on the overall CO2 gas exchange balance of the small tree groups is significantly positive early in the growth season. Water use efficiency is calculated for the whole system using special mathematical formulas (see Chap.  2). A clear reduction in water use at elevated [CO2] occurs at the stand level.

Production of litter is enhanced, and wider C/N ratios indicate reduced litter quality. Effects of more leaf litter recycled to the soil, of lower nutrient concentrations in soil organic material, of more root exudates, and of increased root mass turnover on soil bacteria are discussed. Despite some negative effects, it seems likely that fungi mass and activity will increase more than bacterial mass in forest soils should tropospheric [CO2] increase further. Effects on a few soil animals are also documented and summarized. As with bacteria and fungi, they also respond to reduced litter quality at elevated [CO2]. Wider C/N ratios also determine herbivory above- and belowground. Effects are discussed on the basis of examples in terms of animal abundance, consumption, developmental time, and relative growth rates. In addition, plausible effects of increased temperature on consumption rates are considered with respect to altered food quality.


Leaf area index Net primary production Phytomass accumulation CO2 gas exchange of soil-litter-plant systems Evapotranspiration Soil warming Litter quality Decomposition Soil bacteria Soil fungi Earthworms Herbivory Consumption rate Soil invertebrate community 


  1. A’Bear AD, Jones TH, Boddy L (2014) Potential impacts of climate change on interactions among saprotrophic cord-foming fungal mycelia and grazing soil invertebrates. Fungal Ecol 10:34–43CrossRefGoogle Scholar
  2. Alberton O, Kuyper TW, Gorissen A (2007) Competition for nitrogen between Pinus sylvestris and ectomycorrhizal fungi generates potential for negative feedback under elevated CO2. Plant Soil 296:159–172CrossRefGoogle Scholar
  3. Alberton O, Kuyper TW, Summerbell RC (2010) Dark septate root endophytic fungi increase growth of Scots pine seedlings under elevated CO2 through enhanced nitrogen use efficiency. Plant Soil 328:459–470CrossRefGoogle Scholar
  4. Allen AS, Andrews JA, Finzi AC, Matamala R, Richter DD, Schlesinger WH (2000) Effects of free-air CO2 enrichment (FACE) on belowground processes in a Pinus taeda forest. Ecol Appl 10:437–448Google Scholar
  5. Allison SD, Treseder KK (2008) Warming and drying suppress microbial activity and carbon cycling in boreal forest soils. Glob Chang Biol 14:2898–2909CrossRefGoogle Scholar
  6. Bader MK-F, Siegwolf R, Körner C (2010) Sustained enhancement of photosynthesis in mature deciduous forest trees after 8 years of free air CO2 enrichment. Planta 232:1115–1125PubMedCrossRefGoogle Scholar
  7. Bader MK-F, Leuzinger S, Keel SG, Siegwolf RT, Hagedorn F, Schleppi P, Körner C (2013) Central European hardwood trees in a high-CO2 future: synthesis of an 8-year forest canopy CO2 enrichment project. J Ecol 101:1509–1519CrossRefGoogle Scholar
  8. Beier C, Emmett BA, Peñuelas J, Schmidt IK, Tietema A, Estiarte M, Gundersen P, Llorens L, Riis-Nielsen T, Sowerby A, Gorissen A (2008) Carbon and nitrogen cycles in European ecosystems respond differently to global warming. Sci Total Environ 407:692–697PubMedCrossRefGoogle Scholar
  9. Blossey B, Hunt-Joshi TR (2003) Belowground herbivory by insects: influence on plants and above-ground herbivores. Annu Rev Entomol 48:521–547PubMedCrossRefGoogle Scholar
  10. Castro HF, Classen AT, Austin EE, Norby RJ, Schadt CW (2010) Appl Environ Microbiol 76:999–1007PubMedCrossRefGoogle Scholar
  11. Cavaleri MA, Oberbauer SF, Ryan MG (2008) Foliar and ecosystem respiration in an old growth tropical rain forest. Plant Cell Environ 31:473–483PubMedCrossRefGoogle Scholar
  12. Ceulemans R, Mousseau M (1994) Effects of elevated atmospheric CO2 on woody plants. Tansley Review No 71, New Phytol 127:425–446CrossRefGoogle Scholar
  13. Chen H, Rygiewicz PT, Johnson MG, Harmon ME, Tian H, Tang JW (2008) Chemistry and long-term decomposition of roots of Douglas-fir grown under elevated atmospheric carbon dioxide and warming conditions. J Environ Qual 37:1327–1336PubMedCrossRefGoogle Scholar
  14. Cheng W (1999) Rhizosphere feedbacks in elevated CO2. Tree Physiol 19:313–320PubMedCrossRefGoogle Scholar
  15. Chung H, Muraoka H, Nakamura M, Han S, Muller O, Son Y (2013) Experimental warming studies on tree species and forest ecosystems: a literature review. J Plant Res 126:447–460PubMedCrossRefGoogle Scholar
  16. Cleveland CC, Reed SC, Keller AB, Nemergut DR, O’Neill SP, Ostertag R, Vitousek P (2014) Litter quality versus soil microbial community controls over decomposition: a quantitative analysis. Oecologia 174:283–294PubMedCrossRefGoogle Scholar
  17. Comstedt D, Boström B, Marshall JD, Holm A, Slaney M, Linder S, Ekblad A (2006) Effects of elevated atmospheric carbon dioxide and temperature on soil respiration in a Boreal Forest using δ13C as a labeling tool. Ecosystems 9:1266–1277CrossRefGoogle Scholar
  18. Cotrufo MF, Ineson P, Scott AY (1998a) Elevated CO2 reduces the nitrogen concentration of plant tissues. Glob Chang Biol 4:43–54CrossRefGoogle Scholar
  19. Cotrufo MF, Briones MJI, Ineson P (1998b) Elevated CO2 affects field decomposition rate and palatability of tree leaf litter: importance of changes in substrate quality. Soil Biol Biochem 30:1565–1571CrossRefGoogle Scholar
  20. David J-F, Gillon D (2009) Combined effects of elevated temperature and reduced litter quality on the life-history parameters of a saprophagous macroarthropod. Glob Chang Biol 15:156–165CrossRefGoogle Scholar
  21. DeLucia EH, Drake JE, Thomas RB, Gonzalez-Meler M (2007) Forest carbon use efficiency: is respiration a constant fraction of gross primary production? Glob Chang Biol 13:1157–1167CrossRefGoogle Scholar
  22. Dib AE, Johnson CE, Driscoll CT, Fahey TJ, Hayhoe K (2014) Simulating effects of changing climate and CO2 emissions on soil carbon pools at the Hubbard Brook experimental forest. Glob Chang Biol 20:1643–1656PubMedCrossRefGoogle Scholar
  23. Dieleman WIJ, Vicca S, Dijkstra FA, Hagedorn F, Hovenden MJ, Larsen K, Morgan JA, Volder A, Beier C, Dukes JS, King J, Leuzinger S, Linder S, Luo Y, Oren R, De Angelis P, Tingey D, Hoosbeek MR, Janssens IA (2012) Simple additive effects are rare: a quantitative review of plant biomass and soil process responses to combines manipulations of CO2 and temperature. Glob Chang Biol 18:2681–2693PubMedCrossRefGoogle Scholar
  24. Drigo B, Kowalchuk GA, van Veen JA (2008) Climate change goes underground: effects of elevated atmospheric CO2 on microbial community structure and activities in the rhizosphere. Biol Fertil Soils 44:667–679CrossRefGoogle Scholar
  25. Ekblad A, Boström B, Holm A, Comstedt D (2005) Forest soil respiration rate and δ13C is regulated by recent above ground weather conditions. Oecologia 143:136–142PubMedCrossRefGoogle Scholar
  26. Eliasson PE, McMurtrie RE, Pepper DA, Srömgren M, Linder S, Ågren GI (2005) The response of heterotrophic CO2 flux to soil warming. Glob Chang Biol 11:167–181CrossRefGoogle Scholar
  27. Ellsworth DS, Thomas R, Crous KY, Palmroth S, Ward E, Maier C, DeLucia E, Oren R (2012) Elevated CO2 affects photosynthetic responses in canopy pine and subcanopy deciduous trees over 10 years: a synthesis from Duke FACE. Glob Chang Biol 18:223–242CrossRefGoogle Scholar
  28. Erhagen B, Öquist M, Sparrman T, Haei M, Ilstedt U, Hedenström M, Schleucher J, Nilsson MB (2013) Temperature response of litter and soil organic matter decomposition is determined by chemical composition of organic material. Glob Chang Biol 19:3858–3871PubMedCrossRefGoogle Scholar
  29. Forstreuter M (2001) Auswirkungen globaler Klimaänderungen auf das Wachstum und den Gaswechsel (CO2/H2O) von Rotbuchenbeständen (Fagus sylvatica L.). Habilitationsschrift (in German with English abstract), TU-Berlin, Gerrmany, pp 115–120, 180–183Google Scholar
  30. Franklin O (2007) Optimal nitrogen allocation controls tree responses to elevated CO2. New Phytol 174:811–822PubMedCrossRefGoogle Scholar
  31. Ge Y, Chen C, Xu Z, Oren R, He J-Z (2010) The spatial factor, rather than elevated CO2, controls the soil bacterial community in a temperate forest ecosystem. Appl Environ Microbiol 76:7429–7436PubMedPubMedCentralCrossRefGoogle Scholar
  32. Hagedorn F, Hiltbrunner D, Streit K, Ekblad A, Lindahl B, Miltner A, Frey B, Handa IT, Hättenschwiler S (2013) Nine years of CO2 enrichment at the alpine treeline stimulates soil respiration but does not alter soil microbial communities. Soil Biol Biochem 57:390–400CrossRefGoogle Scholar
  33. Hättenschwiler S, Buhler S, Körner C (1999) Quality, decomposition and isopod consumption of tree litter produced under elevated CO2. Oikos 85:271–281CrossRefGoogle Scholar
  34. Hess LJT, Austin AT (2014) Pinus ponderosa alters nitrogen dynamics and diminishes the climate footprint in natural ecosystems of Patagonia. J Ecol 102:610–621CrossRefGoogle Scholar
  35. Hoosbeek MR, Vos JM, Meinders MBJ, Velthorst EJ, Scarascia-Mugnozza GE (2007) Free atmospheric CO2 enrichment (FACE) increased respiration and humidification in the mineral soil of poplar plantation. Geoderma 138:204–212CrossRefGoogle Scholar
  36. Hoosbeek MR, Lukac M, Velthorst E, Smith AR, Godbold DL (2011) Free atmospheric CO2 enrichment increased above ground biomass but did not affect symbiontic N2-fixation and soil carbon dynamics in a mixed deciduous stand in Wales. Biogeosciences 8:353–364CrossRefGoogle Scholar
  37. Hu S, Tu C, Chen X, Gruver JB (2006) Progressive N limitation of plant response to elevated CO2: a microbiological perspective. Plant Soil 289:47–58CrossRefGoogle Scholar
  38. Hullé M, Coeur d’Acier A, Bankhead-Dronnet S, Harrington R (2010) Aphids in the face of global changes. C R Biol 333:497–503PubMedCrossRefGoogle Scholar
  39. Hungate BA, Dukes JS, Shaw MR, Luo Y, Field CB (2003) Nitrogen and climate change. Science 302:1512–1513PubMedCrossRefGoogle Scholar
  40. Hungate BA, Van Groenigen K-J, Six J, Jastrow JD, Luo Y, De Graaf M-A, Van Kessel C, Osenberg CW (2009) Assessing the effect of elevated carbon dioxide on soil carbon: a comparison of four meta-analyses. Glob Chang Biol 15:2020–2034CrossRefGoogle Scholar
  41. Hungate BA, Dijkstra P, Wu Z, Duval BD, Day FP, Johnson DW, Megonigal JP, Brown ALP, Garland JL (2013) Cumulative response of ecosystem carbon and nitrogen stocks to chronic CO2 exposure in a subtropical oak woodland. New Phytol 200:753–766PubMedPubMedCentralCrossRefGoogle Scholar
  42. Ivlev AA, Voronin VI (2007) The mechanism of carbon isotope fractionation in photosynthesis and carbon dioxide component of the greenhouse effect. Biol Bull 34:603–609CrossRefGoogle Scholar
  43. Izumi H, Elfstrand M, Fransson P (2012) Suillus mycelia under elevated atmospheric CO2 support increased bacterial communities and scarce nifH gene activity in contrast to Hebeloma mycelia. Mycorrhiza 23:155–165PubMedCrossRefGoogle Scholar
  44. Jackson RB, Cook CW, Pippen JS, Palmer SM (2009) Increased belowground biomass and soil CO2 fluxes after a decade of carbon dioxide enrichment in a warm-temperate forest. Ecology 90:3352–3366PubMedCrossRefGoogle Scholar
  45. Jansson P-E, Svensson M, Kleja DB, Gustafsson D (2008) Simulated change impacts on fluxes of carbon in Norway spruce ecosystems along a climatic transect in Sweden. Biogeochemistry 89:81–94CrossRefGoogle Scholar
  46. Jarvis PJ, Linder S (2000) Constraints to growth of boreal forests. Nature 405:904–905PubMedCrossRefGoogle Scholar
  47. Johnson DW (1999) Simulated nitrogen cycling response to elevated CO2 in Pinus taeda and mixed deciduous forests. Tree Physiol 19:321–327PubMedCrossRefGoogle Scholar
  48. Johnson DW, Hungate BA, Dijkstra P, Hymus G, Hinkle CR, Stiling P, Drake BR (2003) The effects of elevated CO2 on nutrient distribution in a fire-adapted scrub oak forest. Ecol Appl 13:1388–1399CrossRefGoogle Scholar
  49. Johnson SN, Barton AT, Clark KE, Gregory PJ, McMenemy LS, Hancock RD (2011) Elevated atmospheric carbon dioxide impairs the performance of root-feeding vine weevils by modifying root growth and secondary metabolites. Glob Chang Biol 17:688–695CrossRefGoogle Scholar
  50. Kanowski J (2001) Effects of elevated CO2 on the foliar chemistry of seedlings of two rainforest trees from north-east Australia: implications for folivorous marsupials. Austral Ecol 26:165–172CrossRefGoogle Scholar
  51. Kasurinen A, Peltonen PA, Julkunen-Tiitto R, Vapaavuori E, Nuutinen V, Holopainen T, Holopainen JK (2007) Effects of elevated CO2 and O3 on leaf litter phenolics and subsequent performance of litter-feeding soil macrofauna. Plant Soil 292:25–43CrossRefGoogle Scholar
  52. Keel SG, Siegwolf RT, Körner C (2006) Canopy CO2 enrichment permits tracing the fate of recently assimilated carbon in a mature deciduous forest. New Phytol 172:319–329PubMedCrossRefGoogle Scholar
  53. Klironomos JN, Allen MF, Rillig MC, Piotrowski J, Makvandi-Nejad S, Wolfe B-E, Powell JR (2005) Abrupt rise in atmosheric CO2 overestimates community response in a model plant-soil system. Nature 433:621–624PubMedCrossRefGoogle Scholar
  54. Körner C, Asshoff R, Bignucolo O, Hättenschwiler S, Keel SG, Peláez-Riedl S, Pepin S, Siegwolf RTW, Zotz G (2005) Carbon flux and growth in mature deciduous forest trees exposed to elevated CO2. Science 309:1360–1362PubMedCrossRefGoogle Scholar
  55. Kratz W, Reining E, Reining F, Overdieck D (1996) Qualität und Zersetzung der Streu von Acer pseudoplatanus L. nach Wachstum bei erhöhter CO2-Konzentration Verhandlungen der Gesellschaft für Ökologie 26:115–119 (in German, with English abstract)Google Scholar
  56. Laganière J, Paré D, Bergeron Y, Chen HYH (2012) The effect of boreal forest composition on soil respiration is mediated through variations in soil temperature and C quality. Soil Biol Biochem 53:18–27CrossRefGoogle Scholar
  57. Lambers H (1993) Rising CO2, secondary plant metabolism, plant-herbivore interactions and litter decomposition. Vegetatio 104(105):263–271CrossRefGoogle Scholar
  58. Lemoine NP, Drews WA, Burkepile DE, Parker JD (2013) Increased temperature alters feeding behavior of a generalist herbivore. Oikos 122:1669–1678CrossRefGoogle Scholar
  59. Lincoln DE, Sionit N, Strain BR (1984) Growth and feeding response of Pseudoplusia includens (Lepidoptera: Noctuidae) to host plants grown in controlled carbon dioxide atmospheres. Environ Entomol 13:1527–1530CrossRefGoogle Scholar
  60. Lincoln DE, Fajer ED, Johnson RH (1993) Plant-insect herbivore interactions in elevated CO2 environments. Trends Ecol Evol 8:64–68PubMedCrossRefGoogle Scholar
  61. Lindroth RL (2010) Impacts of elevated atmospheric CO2 and O3 on forests: Phytochemistry, trophic interactions and ecosystem dynamics. J Chem Ecol 36:2–21PubMedCrossRefGoogle Scholar
  62. Lindroth RL, Kinney KK, Platz CL (1993) Responses of deciduous trees to elevated atmospheric CO2: productivity, phytochemistry, and insect performance. Ecology 74:763–777CrossRefGoogle Scholar
  63. Lukac M, Calfapietra C, Lagomarsino A, Loreto F (2010) Global climate change and tree nutrition: effects of elevated CO2 and temperature. Tree Physiol 30:1209–1220PubMedCrossRefGoogle Scholar
  64. Makoto K, Arai M, Kaneko N (2014) Change in menu? Species-dependent feeding responses of millipedes to climate warming and the consequences for plant-soil nitrogen dynamics. Soil Biol Biochem 72:19–25CrossRefGoogle Scholar
  65. McGrath JM, Karnosky DF, Ainsworth EA (2010) Spring leaf flush in aspen (Populus tremuloides) clones is altered by long-term growth at elevated carbon dioxide and elevated ozone concentration. Environ Pollut 158:1023–1028PubMedCrossRefGoogle Scholar
  66. Melillo JM, Steudler PA, Aber JD, Newkirk K, Bowles FP, Catricala C, Magill A, Ahrens T, Morriseau S (2002) Soil warming and carbon – cycle feedbacks to the climate system. Science 298:2173–2176PubMedCrossRefGoogle Scholar
  67. Meehan TD, Crossley MS, Lindroth RL (2010) Impacts of elevated CO2 and O3 on aspen leaf litter chemistry and earthworm and springtail productivity. Soil Biol Biochem 42:1132–1137CrossRefGoogle Scholar
  68. Melillo JM, Butler S, Mohan J, Steudler P, Lux H, Burrows E, Bowles F, Smith R, Scott L, Vario C, Hill T, Burton A, Zhou Y-M, Tang J (2011) Soil warming, carbon-nitrogen interactions, and forest carbon budgets. Proc Natl Acad Sci 108:9508–9512PubMedPubMedCentralCrossRefGoogle Scholar
  69. Millard P, Grelet G-A (2010) Nitrogen storage and remobilization by trees: ecophysiological relevance in a changing world. Tree Physiol 30:1083–1095PubMedCrossRefGoogle Scholar
  70. Millard P, Sommerkorn M, Grelet G-A (2007) Environmental change and carbon limitation in trees: a biochemical, ecophysiological and ecosystem appraisal. New Phytol 175:11–28PubMedCrossRefGoogle Scholar
  71. Mohan JE, Clark JS, Schlesinger WH (2007) Long-term CO2 enrichment of a forest ecosystem: implication for forest regeneration and succession. Ecol Appl 17:1198–1212PubMedCrossRefGoogle Scholar
  72. Muraoka H, Koizumi H (2005) Photosynthetic and structural characteristics of canopy and shrub trees in a cool-temperate deciduous broadleaved forest: Implication to the ecosystem carbon gain. Agric For Meteorol 134:39–59CrossRefGoogle Scholar
  73. Murray TJ, Ellsworth DS, Tissue DT, Riegler M (2013) Interactive direct and plant-mediated effects of elevated atmospheric [CO2] and temperature on a eucalypt-feeding insect herbivore. Glob Chang Biol 19:1407–1416PubMedCrossRefGoogle Scholar
  74. Niu S, Luo Y, Fei S, Montagnani L, Bohrer G, Janssens IA, Rambal S, Moors E, Matteucci G (2011) Seasonal hysteresis of net ecosystem exchange in response to temperature change: patterns and causes. Glob Change Biol 17:3102–3114CrossRefGoogle Scholar
  75. Noh NJ, Son Y, Lee SK, Yoon TK, Seo KW, Kim C, Lee W-K, Bae SW, Hwang J (2010) Influence of stand density on soil CO2 efflux for a Pinus densiflora forest in Korea. J Plant Res 123:411–419PubMedCrossRefGoogle Scholar
  76. Norby RJ, Zak DR (2011) Ecological lessons from free-air CO2 enrichment (FACE) experiments. Ecol Evol Syst 42:181–203CrossRefGoogle Scholar
  77. Norby RJ, DeLucia EH, Gielen B, Calfapietra C, Giardini CP, King JS, Ledford J, McCarthy HR, Moore DJP, Ceulemans R, DeAngelis P, Finzi AC, Karnosky DF, Kubiske ME, Lukac M, Pregnitzer KS, Scarascia-Mugnozza GE, Schlesinger WH, Oren R (2005) Forest response to elevated CO2 is conserved across a broad range of productivity. Proc Natl Acad Sci U S A 102:18052–18056PubMedPubMedCentralCrossRefGoogle Scholar
  78. Olsson P, Linder S, Giesler R, Högberg P (2005) Fertilization of boreal forest reduces both autotrophic and heterotrophic soil respiration. Glob Chang Biol 11:1745–1753CrossRefGoogle Scholar
  79. Oren R, Ellsworth DS, Johnsen KH, Phillips N, Ewers BE, Maier C, Schäfer KVR, McCarthy H, Hendrey G, McNulty SG, Katul GG (2001) Soil fertility limits carbon sequestration by forest ecosystems in a CO2-enriched atmosphere. Nature 411:469–472PubMedCrossRefGoogle Scholar
  80. Overdieck D (1993) Effects of atmospheric CO2 enrichment on CO2 gas exchange rates of beech stands in small model-ecosystems. Water Air Soil Pollut 70:259–277CrossRefGoogle Scholar
  81. Peltonen PA, Vapaavuori E, Julkunen-Tilitto R (2005) Accumulation of phenolic compounds in birch leaves is changed by elevated carbon dioxide and ozone. Glob Chang Biol 11:1305–1324CrossRefGoogle Scholar
  82. Peltonen PA, Julkunen-Tilitto R, Vapaavuori E, Holopainen JK (2006) Effects of elevated carbon dioxide and ozone on aphid oviposition preference and birch exudate phenolics. Glob Chang Biol 12:1670–1679CrossRefGoogle Scholar
  83. Ricker M, Gutiérrez-García G, Douglas CD (2007) Modeling long-term tree growth curves in response to warming climate: test cases from a subtropical mountain forest and a tropical rainforest in Mexico. Can J For Res 37:977–989CrossRefGoogle Scholar
  84. Robinson EA, Ryan GD, Newman JA (2012) A meta-analytical review of the effects of elevated CO2 on plant-arthropod interactions highlights the importance of interacting environmental and biological variables. Tansley Review New Phytologist 194:321–336CrossRefGoogle Scholar
  85. Rustad LE, Campbell JL, Marion GM, Norby RJ, Mitchell MJ, Hartley AE, Cornelissen JHC, Gurevitch J (2001) A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming. Oecologia 126:543–562CrossRefGoogle Scholar
  86. Ryalls JM.W., Riegler M, Moore BD, Lopaticki G, Johnson SN (2013) Effects of elevated temperature and CO2 on aboveground-belowground systems: a case study with plants, their mutualistic bacteria and root/shoot herbivores. Frontiers in Plant Science 5, Article 445: 1–7Google Scholar
  87. Rygiewicz PT, Monleon VJ, Ingham ER, Martin KJ, Johnson MG (2010) Soil life in reconstructed ecosystems: initial soil food web responses after rebuilding a forest soil profile for a climate change experiment. Appl Soil Ecol 45:26–38CrossRefGoogle Scholar
  88. Schindlbacher A, Rodler A, Kuffner M, Kitzler B, Sessitsch A, Zechmeister-Boltenstern S (2011) Experimental warming effects on the microbial community of temperate mountain forest soil. Soil Biol Biochem 43:1417–1425PubMedPubMedCentralCrossRefGoogle Scholar
  89. Scullion J, Smith AR, Gwynn-Jones D, Jones DL, Godbold DL (2014) Deciduous woodland exposed to elevated atmospheric CO2 has species-specific impacts on anecic earthworms. Appl Soil Ecol 80:84–92CrossRefGoogle Scholar
  90. Soler R, Van der Putten WH, Harvey JA, Vet LEM, Dicke M, Bezemer TM (2012) Root herbivore effects on aboveground mulitrophic interactions: patterns, processes and mechanisms. J Chem Ecol 38:755–767PubMedPubMedCentralCrossRefGoogle Scholar
  91. Stevnbak K, Scherber C, Gladbach DJ, Beier C, Mikkelsen TN, Christensen S (2011) Interactions between above- and belowground organisms modified in climate change experiments. Nat Clim Chang 2:805–808CrossRefGoogle Scholar
  92. Stiling P, Cornelissen T (2007) How does elevated carbon dioxide (CO2) affect plant-herbivore interactions? A field experiment and meta-analysis of CO2-mediated changes on plant chemistry and herbivore performance. Glob Chang Biol 13:1823–1842CrossRefGoogle Scholar
  93. Stiling P, Moon DC, Hunter MD, Colson J, Rossi AM, Hymus GJ, Drake BG (2003) Elevated CO2 lowers relative and absolute herbivore density across all species of a scrub-oak forest. Oecologia 134:82–87PubMedCrossRefGoogle Scholar
  94. Strain BR, Bazzaz FA (1983) Terrestrial plant communities. In: Lemon ER (ed) CO2 and plants. The response of plants to rising levels of atmospheric carbon dioxide. Westview, Boulder, pp 177–222Google Scholar
  95. Strassemeyer J (2002) Gaswechsel (CO2/H2O) von Eichenbeständen (Quercus robur L.) unter erhöhter atmosphärischer CO2-Konzentration. Dissertation, TU-Berlin, Germany, pp 98–99, 120–123 (in German, with English abstract)Google Scholar
  96. Streit K, Hagedorn F, Hiltbrunner D, Portmann M, Saurer M, Buchmann N, Wild B, Richter A, Wipf S, Siegwolf RTW (2014) Soil warming alters microbial substrate use in alpine soils. Glob Chang Biol 20:1327–1338PubMedCrossRefGoogle Scholar
  97. Suzuki Y, Makino A, Mae T (2001) Changes in the turnover of Rubisco and levels of mRNAs of rbcL and rbsS in rice leaves from emergence to senescence. Plant Cell Environ 24:1353–1360CrossRefGoogle Scholar
  98. Tan Z-H, Zhang Y-P, Song Q-H, Liu Y-H, You G-Y, Li LH, Yu L, Wu C-S, Wen H-D, Zhao J-F, Gao F, Yang L-Y, Song L, Zhang Y-J, Munemasa T, Sha L-Q (2013) Soil respiration in an old-growth subtropical forest: patterns, components, and controls. J Geophys Res-Atmos 118:2981–2990CrossRefGoogle Scholar
  99. Temperton VM, Grayston SJ, Jackson G, Barton CVM, Millard P, Jarvis PG (2003) Effects of elevated carbon dioxide concentration on growth and nitrogen fixation in Alnus glutinosa in long-term field experiment. Tree Physiol 23:1051–1059PubMedCrossRefGoogle Scholar
  100. Tingey DT, Phillips DL, Lee EH, Waschmann RS, Olszyk DM, Rygiewicz PT, Johnson MG (2007) Elevated temperature, soil moisture and seasonality but not CO2 affect canopy assimilation and system respiration in seedling Douglas-fir ecosystems. Agric For Meteorol 143:30–48CrossRefGoogle Scholar
  101. Tissue DT, Thomas RB, Strain BR (1997) Atmospheric CO2 enrichment increases growth and photosynthesis of Pinus taeda: a 4 year experiment in the field. Plant Cell Environ 20:1123–1134CrossRefGoogle Scholar
  102. Treseder K-K (2004) A meta-analysis of mycorrhizal responses to nitrogen, phosphorus, and atmospheric CO2 in field studies. New Phytol 164:347–355CrossRefGoogle Scholar
  103. Uddling J, Teclaw RM, Kubiske ME, Pregnitzer KS, Ellsworth DS (2008) Sap flux in pure aspen and mixed aspen-birch forests exposed to elevated concentrations of carbon dioxide and ozone. Tree Physiol 28:1231–1243PubMedCrossRefGoogle Scholar
  104. van Breemen N, Finlay R, Lundström U, Jongmans AG, Giesler R, Olsson M (2000) Mycorrhizal weathering: a true case of mineral plant nutrition? Biogeochemistry 49:53–67CrossRefGoogle Scholar
  105. van Groenigen KJ, Six J, Harris D, Van Kessel C (2007) Elevated CO2 does not favor a fungal decomposition pathway. Soil Biol Biochem 39:2168–2172CrossRefGoogle Scholar
  106. van Groenigen KJ, Xia J, Osenberg CW, Luo Y, Hungate BA (2015) Application of a two-pool model to soil carbon dynamics under elevated CO2. Glob Chang Biol 21:4293–4297PubMedCrossRefGoogle Scholar
  107. Veteli TO, Mattson WJ, Niemelä P, Julkunen-Tiitto R, Kellomäki S, Kuokkanen K, Lavola A (2007) Do elevated temperature and CO2 generally have counteracting effects on phenolic phytochemistry of boreal trees. J Chem Ecol 33:287–296PubMedCrossRefGoogle Scholar
  108. von Liebig J (1840) Die organische Chemie in ihrer Anwendung auf Agricultur und Physiologie. Friedrich Vieweg und Sohn, Braunschweig (in German)Google Scholar
  109. Wang Q, He T, Wang S, Liu L (2013) Carbon input manipulation affects soil respiration and microbial composition in a subtropical coniferous forest. Agric For Meteorol 178–179:152–160CrossRefGoogle Scholar
  110. Weigt RB, Raidl S, Verma R, Rodenkirchen H, Göttlein A, Agerer R (2011) Effects of twice-ambient carbon dioxide and nitrogen amendment on biomass, nutrient contents and carbon costs of Norway spruce seedlings as influenced by mycorrhization with Piloderma croceum and Tomentellopsis submollis. Mycorrhiza 21:375–391PubMedCrossRefGoogle Scholar
  111. Wittig VE, Bernacchi CJ, Zhu X-G, Calfapietra C, Ceulemans R, De Angelis P, Gielen B, Miglietta F, Morgan PB, Long SP (2005) Gross primary production is stimulated for three Populus species grown under free-air CO2 enrichment from planting through canopy closure. Glob Chang Biol 11:644–656CrossRefGoogle Scholar
  112. Xu G, Jiang H, Zhang Y, Korpelainen H, Li C (2013) Effect of warming on extracted soil carbon pools of Abies faxoniana forest at two elevations. For Ecol Manag 310:357–365CrossRefGoogle Scholar
  113. Yin H, Xiao J, Li Y, Chen Z, Cheng X, Zhao C, Liu Q (2013) Warming effects on root morphological and physiological traits: the potential consequences on soil C dynamics as altered root exudation. Agric For Meteorol 180:287–296CrossRefGoogle Scholar
  114. Zeller B, Colin-Belgrand M, Dambrine E, Martin F, Bottner P (2000) Decomposition of 15N-labelled beech litter and fate of nitrogen derived from litter in beech forest. Oecologia 123:550–559CrossRefGoogle Scholar
  115. Zvereva EL, Kozlov MV (2006) Consequences of simultaneous elevation of carbon dioxide and temperature for plant herbivore interactions: a meta-analysis. Glob Chang Biol 12:27–41CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Singapore 2016

Authors and Affiliations

  • Dieter Overdieck
    • 1
  1. 1.Institute of Ecology, Ecology of Woody PlantsTechnical University of BerlinBerlinGermany

Personalised recommendations