Robust Dynamic Sliding Mode Control for a Class of Uncertain Multi-variable Process

  • B. J. ParvatEmail author
  • B. M. Patre
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 468)


This paper deals with a design of dynamic sliding mode tracking control for a class of uncertain multiple input multiple output (MIMO) process. A dynamic sliding mode control (DSMC) gives more accuracy with reduced/removed chattering resulting from high frequency switching control input. To demonstrate the effectiveness of the proposed DSMC, multi variable coupled tank process is simulated. From simulation results it has been found to be satisfactory.


Robust control Siding mode control (SMC) Dynamic sliding mode control (DSMC) Multi-variable processes MIMO process and uncertain system 


  1. 1.
    M. Khan, and S. Spurgeon, Robust MIMO water level control in interconnected twin-tanks using second order sliding mode control, Control Engineering Practice 14, 375–386 (2006).Google Scholar
  2. 2.
    S. Mondal, C. Mahanta, A fast converging robust controller using adaptive second order sliding mode, ISA Transactions, 51, pp. 713–721 (2012).Google Scholar
  3. 3.
    X. Yan, S. Spurgeon, and C.Edwards, Dynamic Sliding Mode Control for a Class of Systems with Mismatched Uncertainty, European Journal of Control, Volume 11, Issue 1, Pages 110 (2005).Google Scholar
  4. 4.
    P.V. Suryawanshi, P. D. Shendge, and S. B. Phadke, Robust sliding mode control for a class of nonlinear systems using inertial delay control, Nonlinear Dynamics, Springer, Vol. 78, Number 3, pp. 1921–1932 (2014).Google Scholar
  5. 5.
    Utkin V. Variable structure systems with sliding modes. IEEE Transactions on Automatic Control, 22(2), 212–222 (1977).Google Scholar
  6. 6.
    C. Edwards, and S. Spurgeon, Sliding Mode Control: Theory and Applications, Taylor & Francis, 1998.Google Scholar
  7. 7.
    A. Levant, Sliding order and sliding accuracy in sliding mode control, International Journal of Control, 1993, Vol. 58, Issue 6, 1247–1263 (1993).Google Scholar
  8. 8.
    D.M. Tuan, Z. Man, C. Zhang, J. Jin and H. Wang, Robust sliding mode learning control for uncertain discrete-time multi-input multi-output systems, in Control Theory & Applications, IET, Vol. 8, No. 12, pp. 1045–1053, (2014).Google Scholar
  9. 9.
    A.J. Koshkouei, K.J. Burnham and A.S. Zinobar, Dynamic sliding mode control design, IEEE proceeding, Control Theory Applications, Vol. 152, No. 4 (2005).Google Scholar
  10. 10.
    H. Ramirez, and O. Santiogo, Adaptive dynamical sliding mode control via backstepping, Proceedings of the 32\(^{th}\) conference on Decision and Control, San Antonia, Texas, 1422–1427 (1992).Google Scholar
  11. 11.
    S. Mobayen, An adaptive chattering-free PID sliding mode control based on dynamic sliding manifolds for a class of uncertain nonlinear systems, Nonlinear Dynamic, Springer (2015).Google Scholar
  12. 12.
    A.Gholami, A.H.D. Markazi, A new adaptive fuzzy sliding mode observer for a class of MIMO nonlinear systems, Nonlinear Dynamic, Springer, 70, pp. 2095–2105 (2012).Google Scholar
  13. 13.
    L. Fang, T. Li, Z. Li and R. Li, Adaptive terminal sliding mode control for anti-synchronization of uncertain chaotic systems, Nonlinear Dynamic, Springer, 74, pp. 991–1002 (2013).Google Scholar
  14. 14.
    Levant A. Chattering Analysis, IEEE Transactions on Automatic Control, 55(6), 1380–1389 (2010).Google Scholar
  15. 15.
    L. Fridman, J. Moreno, and R. Iriarte, Sliding Modes after the First Decade of the \(21^{st}\) Century, Lecture notes in Control and Information Sciences 412, Springer, Mexico City (2010).Google Scholar
  16. 16.
    I. Eker, Second-order sliding mode control with experimental application, ISA Transactions, Volume 49, Number 394–405 (2010).Google Scholar
  17. 17.
    H. Joe, M. Kim, and S. Yu, Second-order sliding-mode controller for autonomous underwater vehicle in the presence of unknown disturbances, Nonlinear Dynamic, Springer, 78, pp. 183–196 (2014).Google Scholar
  18. 18.
    L. Liu, J. Pu, X. Song, Z. Fu, and X. Wang, Adaptive sliding mode control of uncertain chaotic systems with input nonlinearity, Nonlinear Dynamic, Springer, 76, pp. 1857–1865 (2014).Google Scholar
  19. 19.
    S.Tavakoli, I. Griffin, and Fleming P. J.,Tuning of decentralised PI (PID) controller for TITO processes, Control Engineering Practice, Vol. 14, pp. 1069–1080, (2006).Google Scholar
  20. 20.
    P. Nordfeldt, and T. Hagglund, Decoupler and PID controller design of TITO systems. Journal of Process Control, 16(9), pp. 923–936, (2006).Google Scholar
  21. 21.
    A.A. Khandekar, and B. M. Patre, Advances and applications in sliding mode control system, book chapter, Springer, pp. 225–277, (2015).Google Scholar
  22. 22.
    B.B. Musmade, and B. M. Patre, Design decentralized sliding mode controllers with dynamic decouplers for TITO processes, Variable Structure Systems (VSS), \(12^{th}\) International Workshop, IEEE, (2012).Google Scholar
  23. 23.
    M. Das, and C. Mahanta, Optimal second order sliding mode control for linear uncertain systems, ISA Transactions, 53, 1807–1815, (2014).Google Scholar
  24. 24.
    B. J. Parvat, and B.M. Patre, Design of SMC with decoupler for multi-variable coupled tank process, India Conference (INDICON), 2014 Annual IEEE, vol., no., pp. 1, 5, 11–13, (2014).Google Scholar
  25. 25.
    Q. G. Wang, Lee T. H., Fung H. W., Bi Q. and Zhang Y., PID Tuning for Improved Performance, IEEE Trans. on Control System Technology, Vol. 7, No. 4, pp. 457–465 (1999).Google Scholar

Copyright information

© Springer Science+Business Media Singapore 2017

Authors and Affiliations

  1. 1.Department of Instrumentation EngineeringS.G.G.S Institute of Engineering and TechnologyNandedIndia

Personalised recommendations