Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 721 Accesses

Abstract

This chapter presents a review of the stochastic thermodynamics under feedback control corresponding to the information processing by Maxwell’s demon. In this chapter, we show the derivation of the generalized second law of thermodynamics with information. The generalized second law of thermodynamics indicates that the mutual information between the target system and the feedback controller gives a lower bound of the entropy production. We also discuss the Szilard engine which is a minimal model of the Maxwell’s demon.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H. Touchette, S. Lloyd, Information-theoretic limits of control. Phys. Rev. Lett. 84, 1156 (2000)

    Article  ADS  Google Scholar 

  2. H. Touchette, S. Lloyd, Information-theoretic approach to the study of control systems. Phys. A 331, 140 (2004)

    Article  MathSciNet  Google Scholar 

  3. F.J. Cao, L. Dinis, J.M. Parrondo, Feedback control in a collective flashing ratchet. Phys. Rev. Lett. 93, 040603 (2004)

    Article  ADS  Google Scholar 

  4. L. Dinis, J.M. Parrondo, F.J. Cao, Closed-loop control strategy with improved current for a flashing ratchet. Europhys. Lett. 71, 536 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  5. T. Sagawa, M. Ueda, Second law of thermodynamics with discrete quantum feedback control. Phys. Rev. Lett. 100, 080403 (2008)

    Article  ADS  Google Scholar 

  6. F.J. Cao, M. Feito, Thermodynamics of feedback controlled systems. Phys. Rev. E 79, 041118 (2009)

    Article  ADS  Google Scholar 

  7. F.J. Cao, M. Feito, H. Touchette, Information and flux in a feedback controlled Brownian ratchet. Phys. A 388, 113 (2009)

    Article  Google Scholar 

  8. K. Jacobs, Second law of thermodynamics and quantum feedback control: Maxwell’ s demon with weak measurements. Phys. Rev. A 80, 012322 (2009)

    Article  ADS  Google Scholar 

  9. T. Sagawa, M. Ueda, Minimal energy cost for thermodynamic information processing: measurement and information erasure. Phys. Rev. Lett. 102, 250602 (2009)

    Article  ADS  Google Scholar 

  10. T. Sagawa, M. Ueda, Generalized Jarzynski equality under nonequilibrium feedback control. Phys. Rev. Lett. 104, 090602 (2010)

    Article  ADS  Google Scholar 

  11. Y. Fujitani, H. Suzuki, Jarzynski equality modified in the linear feedback system. J. Phys. Soc. Jpn. 79 (2010)

    Google Scholar 

  12. J.M. Horowitz, S. Vaikuntanathan, Nonequilibrium detailed fluctuation theorem for repeated discrete feedback. Phys. Rev. E 82, 061120 (2010)

    Article  ADS  Google Scholar 

  13. M. Ponmurugan, Generalized detailed fluctuation theorem under nonequilibrium feedback control. Phys. Rev. E 82, 031129 (2010)

    Article  ADS  Google Scholar 

  14. Y. Morikuni, H. Tasaki, Quantum Jarzynski-Sagawa-Ueda Relations. J. Stat. Phys. 143, 1 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. S.W. Kim, T. Sagawa, S. De Liberato, M. Ueda, Quantum szilard engine. Phys. Rev. Lett. 106, 070401 (2011)

    Article  ADS  Google Scholar 

  16. S. Ito, M. Sano, Effects of error on fluctuations under feedback control. Phys. Rev. E 84, 021123 (2011)

    Article  ADS  Google Scholar 

  17. J.M. Horowitz, J.M. Parrondo, Thermodynamic reversibility in feedback processes. Europhys. Lett. 95, 10005 (2011)

    Article  ADS  Google Scholar 

  18. D. Abreu, U. Seifert, Extracting work from a single heat bath through feedback. Europhys. Lett. 94, 10001 (2011)

    Article  ADS  Google Scholar 

  19. S. Vaikuntanathan, C. Jarzynski, Modeling Maxwell’ s demon with a microcanonical Szilard engine. Phys. Rev. E 83, 061120 (2011)

    Article  ADS  Google Scholar 

  20. J.M. Horowitz, J.M. Parrondo, Designing optimal discrete-feedback thermodynamic engines. New J. Phys. 13, 123019 (2011)

    Article  ADS  Google Scholar 

  21. L. Granger, H. Kantz, Thermodynamic cost of measurements. Phys. Rev. E 84, 061110 (2011)

    Article  ADS  Google Scholar 

  22. M. Bauer, D. Abreu, U. Seifert, Efficiency of a Brownian information machine. J. Phys. A 45, 162001 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. T. Sagawa, M. Ueda, Nonequilibrium thermodynamics of feedback control. Phys. Rev. E 85, 021104 (2012)

    Article  ADS  Google Scholar 

  24. T. Munakata, M.L. Rosinberg, Entropy production and fluctuation theorems under feedback control: the molecular refrigerator model revisited. J. Stat. Mech. P05010 (2012)

    Google Scholar 

  25. M. Esposito, G. Schaller, Stochastic thermodynamics for Maxwell demon feedbacks. Europhys. Lett. 99, 30003 (2012)

    Article  ADS  Google Scholar 

  26. D.U. Abreu, Thermodynamics of genuine nonequilibrium states under feedback control. Phys. Rev. Lett. 108, 030601 (2012)

    Article  ADS  Google Scholar 

  27. S. Lahiri, S. Rana, A.M. Jayannavar, Fluctuation theorems in the presence of information gain and feedback. J. Phys. A 45, 065002 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. T. Sagawa, M. Ueda, Fluctuation theorem with information exchange: role of correlations in stochastic thermodynamics. Phys. Rev. Lett. 109, 180602 (2012)

    Article  ADS  Google Scholar 

  29. D. Mandal, C. Jarzynski, Work and information processing in a solvable model of Maxwell’ s demon. Proc. Nat. Acad. Sci. 109, 11641 (2012)

    Article  ADS  Google Scholar 

  30. S. Still, D.A. Sivak, A.J. Bell, G.E. Crooks, Thermodynamics of prediction. Phys. Rev. Lett. 109, 120604 (2012)

    Article  ADS  Google Scholar 

  31. A. Kundu, Nonequilibrium fluctuation theorem for systems under discrete and continuous feedback control. Phys. Rev. E 86, 021107 (2012)

    Article  ADS  Google Scholar 

  32. P. Strasberg, G. Schaller, T. Brandes, M. Esposito, Thermodynamics of a physical model implementing a maxwell demon. Phys. Rev. Lett. 110, 040601 (2013)

    Article  ADS  Google Scholar 

  33. A.C. Barato, D. Hartich, U. Seifert, Information-theoretic versus thermodynamic entropy production in autonomous sensory networks. Phys. Rev. E 87, 042104 (2013)

    Article  ADS  Google Scholar 

  34. J.M. Horowitz, T. Sagawa, J.M. Parrondo, Imitating chemical motors with optimal information motors. Phys. Rev. Lett. 111, 010602 (2013)

    Article  ADS  Google Scholar 

  35. S. Ito, T. Sagawa, Information thermodynamics on causal networks. Phys. Rev. Lett. 111, 180603 (2013)

    Article  ADS  Google Scholar 

  36. A.C. Barato, U. Seifert, An autonomous and reversible Maxwell’s demon. Europhys. Lett. 101, 60001 (2013)

    Article  ADS  Google Scholar 

  37. D. Mandal, H.T. Quan, C. Jarzynski, Maxwell’s refrigerator: an exactly solvable model. Phys. Rev. Lett. 111, 030602 (2013)

    Article  ADS  Google Scholar 

  38. J.J. Park, K.H. Kim, T. Sagawa, S.W. Kim, Heat engine driven by purely quantum information. Phys. Rev. Lett. 111, 230402 (2013)

    Article  ADS  Google Scholar 

  39. H. Tajima, Second law of information thermodynamics with entanglement transfer. Phys. Rev. E 88, 042143 (2013)

    Article  ADS  Google Scholar 

  40. H. Tasaki, Unified Jarzynski and Sagawa-Ueda relations for Maxwell’s demon, arXiv:1308.3776 (2013)

  41. J.M. Horowitz, M. Esposito, Thermodynamics with continuous information flow. Phys. Rev. X 4, 031015 (2014)

    Google Scholar 

  42. D. Hartich, A.C. Barato, U. Seifert, Stochastic thermodynamics of bipartite systems: transfer entropy inequalities and a Maxwell’s demon interpretation. J. Stat. Mech. P02016 (2014)

    Google Scholar 

  43. N. Shiraishi, T. Sagawa, Fluctuation theorem for partially masked nonequilibrium dynamics. Phys. Rev. E 91, 012130 (2015)

    Article  ADS  Google Scholar 

  44. S. Ito, T. Sagawa, Maxwell’s demon in biochemical signal transduction with feedback loop. Nat. Commun. 8, 7498 (2015)

    Article  Google Scholar 

  45. A.C. Barato, D. Hartich, U. Seifert, Efficiency of cellular information processing. New J. Phys. 16, 103024 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  46. A.C. Barato, U. Seifert, Stochastic thermodynamics with information reservoirs. Phys. Rev. E 90, 042150 (2014)

    Article  ADS  Google Scholar 

  47. P. Sartori, L. Granger, C.F. Lee, J.M. Horowitz, Thermodynamic costs of information processing in sensory adaption. PLoS Comput. Biol. 10, e1003974 (2014)

    Article  ADS  Google Scholar 

  48. S. Bo, M. Del Giudice, A. Celani, Thermodynamic limits to information harvesting by sensory systems. J. Stat. Mech. P01014 (2015)

    Google Scholar 

  49. S. Toyabe, T. Sagawa, M. Ueda, E. Muneyuki, M. Sano, Experimental demonstration of information-to-energy conversion and validation of the generalized Jarzynski equality. Nat. Phys. 6, 988 (2010)

    Article  Google Scholar 

  50. A. Berut, A. Arakelyan, A. Petrosyan, S. Ciliberto, R. Dillenschneider, E. Lutz, Experimental verification of Landauer’s principle linking information and thermodynamics. Nature 483, 187 (2012)

    Article  ADS  Google Scholar 

  51. J.V. Koski, V.F. Maisi, T. Sagawa, J.P. Pekola, Experimental observation of the role of mutual information in the nonequilibrium dynamics of a maxwell demon. Phys. Rev. Lett. 113, 030601 (2014)

    Article  ADS  Google Scholar 

  52. H.S. Leff, A.F. Rex (eds.), Maxwell’s demon 2: Entropy, Classical and Quantum Information, Computing (Princeton University Press, New Jersey, 2003)

    Google Scholar 

  53. L. Szilard, Über die Entropieverminderung in einem thermodynamischen System bei Eingriffen intelligenter Wesen. Z. Phys. 53, 840 (1929)

    Article  ADS  MATH  Google Scholar 

  54. L. Brillouin, Maxwell’s demon cannot operate: information and entropy. I. J. Appl. Phys. 22, 334 (1951)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  55. C.H. Bennett, The thermodynamics of computation–a review. Int. J. Theor. Phys. 21, 905 (1982)

    Article  Google Scholar 

  56. R. Landauer, Irreversibility and heat generation in the computing process. IBM J. Res. Dev. 5, 183 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  57. K. Maruyama, F. Nori, V. Vedral, Colloquium: the physics of Maxwell’s demon and information. Rev. Mod. Phys. 81, 1 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sosuke Ito .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Ito, S. (2016). Information Thermodynamics Under Feedback Control. In: Information Thermodynamics on Causal Networks and its Application to Biochemical Signal Transduction. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-10-1664-6_4

Download citation

Publish with us

Policies and ethics