Skip to main content

Introduction

  • Chapter
  • First Online:
  • 594 Accesses

Abstract

Rapid advancements in micro- and nanotechnologies have paved the way for the development of cell-/molecule-based biosensors at the micro/nano scale by providing novel micro/nano transducers and the integration of them with cells/molecules. In the recent decades, the integration of cells/molecules with micro/nano devices for the development of novel sensors with unique functions has attracted intensive interest and substantial research efforts. Exciting progress has been achieved due to the combination of micro/nano fabrication technologies with biotechnologies, which introduced new concepts and scientific paradigms to this area. Fast advancements in micro/nano structured devices are providing unprecedented opportunities to couple the devices with functional cells/molecules for the development of next generation of cell and molecular sensors. Micro/nano devices with novel designs at the micro/nano scale make it possible to integrate functional cells/molecules onto transducers with high efficiency and a negligible loss of functionality, which can improve the performances of sensors for the detection of responsive signals. Micro/nano cell and molecular sensors have become increasingly important and have found wide applications in a variety of areas. The topics covered by this book provide a comprehensive summary of the current state of micro/nano cell and molecular sensors as well as their future trend of development, which will be of great interest to the interdisciplinary research community active in this area. In this chapter, we will introduce the definition, characteristics, and types of micro/nano cell and molecular sensors.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Buck L, Axel R. A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell. 1991;65(1):175–87.

    Article  CAS  PubMed  Google Scholar 

  2. Nakamura T. Cellular and molecular constituents of olfactory sensation in vertebrates. Comp Biochem Physiol A Mol Integr Physiol. 2000;126(1):17–32.

    Article  CAS  PubMed  Google Scholar 

  3. Ache BW, Young JM. Olfaction: diverse species, conserved principles. Neuron. 2005;48(3):417–30.

    Article  CAS  PubMed  Google Scholar 

  4. Gilbertson TA, Boughter JD, Zhang H, Smith DV. Distribution of gustatory sensitivities in rat taste cells: whole-cell responses to apical chemical stimulation. J Neurosci. 2001;21(13):4931–41.

    CAS  PubMed  Google Scholar 

  5. DeFazio RA, Dvoryanchikov G, Maruyama Y, Kim JW, Pereira E, Roper SD, Chaudhari N. Separate populations of receptor cells and presynaptic cells in mouse taste buds. J Neurosci. 2006;26(15):3971–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chandrashekar J, Hoon MA, Ryba NJ, Zuker CS. The receptors and cells for mammalian taste. Nature. 2006;444(7117):288–94.

    Article  CAS  PubMed  Google Scholar 

  7. Wu C, Wang L, Zhou J, Zhao L, Wang P. The progress of olfactory transduction and biomimetic olfactory-based biosensors. Chin Sci Bull. 2007;52(14):1886–96.

    Article  CAS  Google Scholar 

  8. Du L, Zou L, Zhao L, Wang P, Wu C. Biomimetic chemical sensors using bioengineered olfactory and taste cells. Bioengineered. 2014;5(5):326–30.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Wu C, Du L, Zou L, Zhao L, Huang L, Wang P. Recent advances in taste cell-and receptor-based biosensors. Sensors Actuators B. 2014;201:75–85.

    Article  CAS  Google Scholar 

  10. Prasad S, Tuncel E, Ozkan M. Association of different prediction methods for determination of the efficiency and selectivity on neuron-based sensors. Biosens Bioelectron. 2006;21(7):1045–58.

    Article  CAS  PubMed  Google Scholar 

  11. Morin F, Nishimura N, Griscom L, LePioufle B, Fujita H, Takamura Y, Tamiya E. Constraining the connectivity of neuronal networks cultured on microelectrode arrays with microfluidic techniques: a step towards neuron-based functional chips. Biosens Bioelectron. 2006;21(7):1093–100.

    Article  CAS  PubMed  Google Scholar 

  12. Wang T, Hu N, Cao J, Wu J, Su K, Wang P. A cardiomyocyte-based biosensor for antiarrhythmic drug evaluation by simultaneously monitoring cell growth and beating. Biosens Bioelectron. 2013;49:9–13.

    Article  PubMed  Google Scholar 

  13. Liu Q, Cai H, Xu Y, Xiao L, Yang M, Wang P. Detection of heavy metal toxicity using cardiac cell-based biosensor. Biosens Bioelectron. 2007;22(12):3224–9.

    Article  CAS  PubMed  Google Scholar 

  14. DeBusschere BD, Kovacs GT. Portable cell-based biosensor system using integrated CMOS cell-cartridges. Biosens Bioelectron. 2001;16(7):543–56.

    Article  CAS  PubMed  Google Scholar 

  15. Du L, Wu C, Liu Q, Huang L, Wang P. Recent advances in olfactory receptor-basedbiosensors. Biosens Bioelectron. 2013;42:570–80.

    Article  CAS  PubMed  Google Scholar 

  16. Sassolas A, Leca-Bouvier BD, Blum LJ. DNA biosensors and microarrays. Chem Rev. 2008;108(1):109–39.

    Article  CAS  PubMed  Google Scholar 

  17. Liu A, Wang K, Weng S, Lei Y, Lin L, Chen W, Lin X, Chen Y. Development of electrochemical DNA biosensors. TrAC Trends Anal Chem. 2012;37:101–11.

    Article  Google Scholar 

  18. Ho C-M, Tai Y-C. Micro-electro-mechanical-systems (MEMS) and fluid flows. Annu Rev Fluid Mech. 1998;30(1):579–612.

    Article  Google Scholar 

  19. Grayson ACR, Shawgo RS, Johnson AM, Flynn NT, Li Y, Cima MJ, Langer R. A BioMEMS review: MEMS technology for physiologically integrated devices. Proc IEEE. 2004;92(1):6–21.

    Article  CAS  Google Scholar 

  20. Bashir R. BioMEMS: state-of-the-art in detection, opportunities and prospects. Adv Drug Deliv Rev. 2004;56(11):1565–86.

    Article  CAS  PubMed  Google Scholar 

  21. Turner A, Karube I, Wilson GS. Biosensors: fundamentals and applications. 1987.

    Google Scholar 

  22. Liu Q. Cell-based biosensors: principles and applications (Artech House, 2014). 2014.

    Google Scholar 

  23. Wang P, Liu Q, Xu Y, Cai H, Li Y. Olfactory and taste cell sensor and its applications in biomedicine. Sensors Actuators A Phys. 2007;139(1):131–8.

    Article  CAS  Google Scholar 

  24. Wu C, Chen P, Yu H, Liu Q, Zong X, Cai H, Wang P. A novel biomimetic olfactory-based biosensor for single olfactory sensory neuron monitoring. Biosens Bioelectron. 2009;24(5):1498–502.

    Article  CAS  PubMed  Google Scholar 

  25. Wu C, Du L, Mao L, Wang P. A novel bitter detection biosensor based on light addressable potentiometric sensor. J Innov Opt Health Sci. 2012;5(02):1250008.

    Article  Google Scholar 

  26. Kim D-S, Jeong Y-T, Park H-J, Shin J-K, Choi P, Lee J-H, Lim G. An FET-type charge sensor for highly sensitive detection of DNA sequence. Biosens Bioelectron. 2004;20(1):69–74.

    Article  CAS  PubMed  Google Scholar 

  27. Kataoka-Hamai C, Miyahara Y. Label-free detection of DNA by field-effect devices. Sensors J IEEE. 2011;11(12):3153–60.

    Article  CAS  Google Scholar 

  28. Wu C, Bronder T, Poghossian A, Werner CF, Schöning MJ. Label-free detection of DNA using a light-addressable potentiometric sensor modified with a positively charged polyelectrolyte layer. Nanoscale. 2015;7(14):6143–50.

    Article  CAS  PubMed  Google Scholar 

  29. Chaniotakis N, Sofikiti N. Novel semiconductor materials for the development of chemical sensors and biosensors: a review. Anal Chim Acta. 2008;615(1):1–9.

    Article  CAS  PubMed  Google Scholar 

  30. Zeck G, Fromherz P. Noninvasive neuroelectronic interfacing with synaptically connected snail neurons immobilized on a semiconductor chip. Proc Natl Acad Sci. 2001;98(18):10457–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kotov NA, Winter JO, Clements IP, Jan E, Timko BP, Campidelli S, Pathak S, Mazzatenta A, Lieber CM, Prato M. Nanomaterials for neural interfaces. Adv Mater. 2009;21(40):3970–4004.

    Article  CAS  Google Scholar 

  32. Stenlund P, Babcock GJ, Sodroski J, Myszka DG. Capture and reconstitution of G protein-coupled receptors on a biosensor surface. Anal Biochem. 2003;316(2):243–50.

    Article  CAS  PubMed  Google Scholar 

  33. Xiao L, Liu Q, Hu Z, Zhang W, Yu H, Wang P. A multi-scale electrode array (MSEA) to study excitation–contraction coupling of cardiomyocytes for high-throughput bioassays. Sensors Actuators B. 2011;152(1):107–14.

    Article  CAS  Google Scholar 

  34. Xiao L, Hu Z, Zhang W, Wu C, Yu H, Wang P. Evaluation of doxorubicin toxicity on cardiomyocytes using a dual functional extracellular biochip. Biosens Bioelectron. 2010;26(4):1493–9.

    Article  CAS  PubMed  Google Scholar 

  35. Liu Q, Wu C, Cai H, Hu N, Zhou J, Wang P. Cell-based biosensors and their application in biomedicine. Chem Rev. 2014;114(12):6423–61.

    Article  CAS  PubMed  Google Scholar 

  36. Wu C, Lillehoj PB, Wang P. Bioanalytical and chemical sensors using living taste, olfactory, and neural cells and tissues: a short review. Analyst. 2015;140(21):7048–61.

    Article  CAS  PubMed  Google Scholar 

  37. Duan X, Gao R, Xie P, Cohen-Karni T, Qing Q, Choe HS, Tian B, Jiang X, Lieber CM. Intracellular recordings of action potentials by an extracellular nanoscale field-effect transistor. Nat Nanotechnol. 2012;7(3):174–9.

    Article  CAS  Google Scholar 

  38. Gui EL, Li L-J, Zhang K, Xu Y, Dong X, Ho X, Lee PS, Kasim J, Shen Z, Rogers JA. DNA sensing by field-effect transistors based on networks of carbon nanotubes. J Am Chem Soc. 2007;129(46):14427–32.

    Article  CAS  PubMed  Google Scholar 

  39. Nguyen TA, Yin T-I, Reyes D, Urban GA. Microfluidic chip with integrated electrical cell-impedance sensing for monitoring single cancer cell migration in three-dimensional matrixes. Anal Chem. 2013;85(22):11068–76.

    Article  CAS  PubMed  Google Scholar 

  40. Navarrete EG, Liang P, Lan F, Sanchez-Freire V, Simmons C, Gong T, Sharma A, Burridge PW, Patlolla B, Lee AS. Screening drug-induced arrhythmia using human induced pluripotent stem cell–derived cardiomyocytes and Low-impedance microelectrode arrays. Circulation. 2013;128(11 suppl 1):S3–13.

    Article  CAS  PubMed  Google Scholar 

  41. Hu N, Fang J, Li H, Su K, Wang P. Dual-function microelectrode array system for simultaneously monitoring electromechanical integration status of cardiomyocytes, in Editor (Ed.)^(Eds.): Book dual-function microelectrode array system for simultaneously monitoring electromechanical integration status of cardiomyocytes (IEEE, 2015, edn.), p. 1519–22.

    Google Scholar 

  42. Qing Q, Pal SK, Tian B, Duan X, Timko BP, Cohen-Karni T, Murthy VN, Lieber CM. Nanowire transistor arrays for mapping neural circuits in acute brain slices. Proc Natl Acad Sci. 2010;107(5):1882–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Yang W, Ratinac KR, Ringer SP, Thordarson P, Gooding JJ, Braet F. Carbon nanomaterials in biosensors: should you use nanotubes or graphene? Angew Chem Int Ed. 2010;49(12):2114–38.

    Article  CAS  Google Scholar 

  44. Pandey P, Datta M, Malhotra B. Prospects of nanomaterials in biosensors. Anal Lett. 2008;41(2):159–209.

    Article  CAS  Google Scholar 

  45. Wang J. Nanomaterial-based electrochemical biosensors. Analyst. 2005;130(4):421–6.

    Article  CAS  PubMed  Google Scholar 

  46. Patolsky F, Weizmann Y, Willner I. Long‐range electrical contacting of redox enzymes by SWCNT connectors. Angew Chem Int Ed. 2004;43(16):2113–7.

    Article  CAS  Google Scholar 

  47. Welz B, Sperling M. Atomic absorption spectrometry. Weinheim: Wiley; 2008.

    Google Scholar 

  48. Jarvis KE, Gray AL, Houk RS. Handbook of inductively coupled plasma mass spectrometry. New York: Blackie; Chapman and Hall; 1991.

    Google Scholar 

  49. Schöning MJ, Kloock JP. About 20 years of silicon – based thin – film sensors with chalcogenide glass materials for heavy metal analysis: technological aspects of fabrication and miniaturization. Electroanalysis. 2007;19(19‐20):2029–38.

    Article  Google Scholar 

  50. Wan H, Ha D, Zhang W, Zhao H, Wang X, Sun Q, Wang P. Design of a novel hybrid sensor with microelectrode array and LAPS for heavy metal determination using multivariate nonlinear calibration. Sensors Actuators B. 2014;192:755–61.

    Article  CAS  Google Scholar 

  51. Ha D, Hu N, Wu C, Kirsanov D, Legin A, Khaydukova M, Wang P. Novel structured light-addressable potentiometric sensor array based on PVC membrane for determination of heavy metals. Sensors Actuators B. 2012;174:59–64.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Science Press and Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Wang, P., Wu, C., Hu, N., Hsia, K.J. (2016). Introduction. In: Wang, P., Wu, C., Hu, N., Hsia, K. (eds) Micro/Nano Cell and Molecular Sensors. Springer, Singapore. https://doi.org/10.1007/978-981-10-1658-5_1

Download citation

Publish with us

Policies and ethics