Visible Light Induced ZnTiO3 Photocatalyst Synthesized by Co-Precipitation Process

  • P. SirajudheenEmail author
  • K. B. Sanoop
  • Muhammed Rashid
Conference paper


A simple co-precipitation method was used for the synthesis of visible light assisted photocatalyst zinc titanate (ZnTiO3) nano particle powders. The powder synthesized was analyzed by means of Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and the decomposition temperature was analyzed by using Thermogravimetric analysis (TGA). The particle size of the prepared zinc titanate was calculated by using Scherer equation and it was found to be 100 nm in size. An aqueous solution of methyl orange was used to study the photocatalytic efficiency of the prepared zinc titanate nano particles. The results confirmed that the zinc titanate nano-particle display excellent photocatalytic efficiency in visible range radiation.


Zinc titanate Co-precipitation XRD FTIR Photocatalytic activity 


  1. Andres-Verges, M., Martinez-Gailego, M.: Spherical and rod-like zinc oxide microcrystals: morphological characterization and microstructural evolution with temperature, Mater. Sci. J., 3756–3762, (1992)Google Scholar
  2. Aubert, T., Grasset, F., Potel, M., Nazabal, V., Cardinal, T., St Pechev, Saito, N.: Synthesis and characterization of Eu3+,Ti4+@ZnO organosols and nanocrystalline c-ZnTiO3 thin films aiming at high transparency and luminescence, Sci. Technol. Adv. Mater., 044401–044409, UK (2010)Google Scholar
  3. Beenakumari, K.S.: Visible Light driven Tin Titanate Photo-Catalyst Prepared by Co- Precipitation Method. Int. J. Mater. Sci. Innov, 174–181, Malasiya (2013)Google Scholar
  4. Chang, C.H., Shen, Y.H.: Synthesis and characterization of chromium doped SrTiO3, Matr. Lett, Elsevier (2006)Google Scholar
  5. Golovchansky, A., Kim, H., Kim, Y.: Zinc Titanates Dielectric Ceramics Prepared by Sol-Gel Process, pp. S1167-S1169, J. KoreanPhys. Soc., Korea (1998)Google Scholar
  6. Ho, J., Choy, T.Un., Eue, P.: Zinc oxide having enhanced photocatalytic Activity. IPC8 Class: AC01G902FI, USPC Class: 428402, Washington, US (2009)Google Scholar
  7. Hosono, E., Fujihara, S., Onuki, M., Kimura, T.: Low-temperature synthesis of nanocrystalline zinc titanate materials with high specific surface area, J. Amer. Cer. Soc, 1785–1788, US (2004)Google Scholar
  8. Khan, S.U., Al-Shahry, M., Ingler, W.B.: Efficient photochemical water splitting by a chemically modified Sn-TiO2, pp. 2243–2245, J. Mater. Sci. USA (2002)Google Scholar
  9. Kato, H., Kundo, A.: Visible light response and photocatalytic activities of TiO2 and SrTiO3 Photocatalysts Co doped with Antimony and Chromium 106, J. Phys. Chem. B, Oxford 5029–5034(2002)Google Scholar
  10. Mancheva, M., Iordanova, R., Dimitriev, Y.: Mechanochemical synthesis of nanocrystalline ZnWO4 at room temperature, J. Alloys Compounds, 15–20, US (2011)Google Scholar
  11. Murashkevich, A., Lavitkaya, A., Barannikova, T.: Infrared absorption spectra and of TiO2-SiO2 composite, J. Appl. Spectrosc., 730–734, Australia (2008)Google Scholar
  12. Shabalin, B.G.: Synthesis and IR Spectra of Some Rare and New Titanium and Niobium, Mineral. Zh., 54–61 (1982)Google Scholar
  13. Wu, J., Chen, C.H. (2004): Photo-catalytic reduction of carbon dioxide to methane using TiO2, J. Photochem. Photobiol. A: Chem. Elsevier, 503–508, USA (2004)Google Scholar
  14. Wang, S.F., Gu, F., Lu, M.K.: Preparation and characterization of sol–gel derived ZnTiO3 nanocrystals, Mater. Res. Bullt., 1283–1288, Elsevier (2003)Google Scholar
  15. Wang, S.F., Gu, F., Lu, M.K.: dielectric properties of zinc titanate ceramics, Ceramics, Mater. Res. 1283–1288, (2003)Google Scholar
  16. Xin, S., Jing, H., Dong, C.: Visible-light-induced photocatalyst based on nickel titanate nanoparticles, Ind. Eng. Chem. Res, 4750–4753, Washington (2008)Google Scholar
  17. Yurchenko, E., Kustovar, G., Bacanov, S.: Vibratioanl spectroscopy of inorganic compounds. Nauka, Russian (1981)Google Scholar
  18. Yamashita, H., Harada, H., Misaka, J.: Degradation of propanol diluted in water under visible light irradiation using metal ion-implanted titanium dioxide photocatalyst. J. Photochem. Photobiol. A: Chem. 257–261. Elsevier (2002)Google Scholar
  19. Yamaguchi, O., Morimi, M., Kawabata, H.: Formation and transformation of ZnTiO3, J Am. Ceram. Soc., C-97-C98, US (1987)Google Scholar
  20. Zhou, Z., Ye, Y., Sayama, K., Arakawa, H.: Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst, pp. 625–627, Nature, London (2001)Google Scholar

Web sites

  1. Web-1: Takashi Kamegawa, Yasushi Ishiguro, Ryota Kido, Hiromi Yamashita .: Design of Composite Photocatalyst of TiO2 and Y-Zeolite for Degradation of 2-Propanol in the Gas Phase under UV and Visible Light Irradiation, pp. 16477–16488, doi: 10.3390/molecules191016477. (2014)
  2. Web-2: Steven L. suibe.: New and Future Developments in Catalysis: Solar Photocatalysis, pp. 116–118, Elsivier, Washington (2013) ttps://, (2013)Google Scholar
  3. Web-3: Mingfei Shao, Jingbin Han, Min Wei, David G. Evans, Xue Duan.: The synthesis of hierarchical Zn–Ti layered double hydroxide for efficient, pp. 519– 524, Chemical Engineering Journal, Elsevier, Washington (2011), (2011)
  4. Web-5: K S Beenakumari.: Visible Light driven Tin Titanate Photo-Catalyst Prepared by Co-Precipitation Method, Acadamic Research Online Publishers Sdn. Bhd., Malasiya (2013)…/html-visible-light-driven-tin-titanate-photo-catalyst-, (2013)

Copyright information

© Springer Science+Business Media Singapore 2016

Authors and Affiliations

  • P. Sirajudheen
    • 1
    Email author
  • K. B. Sanoop
    • 1
  • Muhammed Rashid
    • 1
  1. 1.Department of ChemistryWMO Imam Gazzali Arts and Science CollegeKoolivayalIndia

Personalised recommendations