Skip to main content

Numerical Study of Heat Transfer Characteristics of Nano-fluids in Channel Containing Different Shapes of Submerged Tube

  • Conference paper
  • First Online:
Recent Advances in Chemical Engineering
  • 984 Accesses

Abstract

The convective heat transfer coefficient of nanofluids in a channel has been numerically studied for the laminar flow condition. The channel has been confined with inline noncircular tubes. The computational channel has aspect ratios of 10 × 0.66 cm2 with five different circular and non-circular tubes placed in series one after another. The 2D numerical simulation has been solved for different Reynolds number (Re) and the heat transfer coefficient and pressure drops were determined. A custom field function has been written to calculate the entropy generation. The simulation results showed that the Nusselt number and the heat transfer coefficient enhanced with the increase in nanoparticles concentration in nanofluid. From the entropy generation results, it can be predicted that entropy of system increased as concentration of nanoparticles increase. Entropy of the channel with obround tubes was found to be much higher than other geometry of tubes (circular, oval, diamond and rhombus).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

C p :

Specific heat \( \left( {{{\text{J}} \mathord{\left/ {\vphantom {{\text{J}} {{\text{kg}}\,{\text{K}}}}} \right. \kern-0pt} {{\text{kg}}\,{\text{K}}}}} \right) \)

D :

Diameter of in-line tube \( \left( {\text{cm}} \right) \)

H :

Diameter of channel \( \left( {\text{cm}} \right) \)

L :

Length of single module \( \left( {\text{cm}} \right) \)

Nu :

Nusselt number

Re :

Reynolds number

\( \dot{S}_{gen} \) :

Total entropy generation per unit volume \( \left( {{{\text{J}} \mathord{\left/ {\vphantom {{\text{J}} {\left( {{\text{s}}\,{\text{K}}} \right){\text{ m}}^{ 3} \, }}} \right. \kern-0pt} {\left( {{\text{s}}\,{\text{K}}} \right){\text{ m}}^{ 3} \, }}} \right) \)

\( \dot{S}_{HT} \) :

Entropy generation due to heat transfer per unit volume \( \left( {{{\text{J}} \mathord{\left/ {\vphantom {{\text{J}} {\left( {{\text{s}}\,{\text{K}}} \right){\text{ m}}^{ 3} \, }}} \right. \kern-0pt} {\left( {{\text{s}}\,{\text{K}}} \right){\text{ m}}^{ 3} \, }}} \right) \)

\( \dot{S}_{VD} \) :

Entropy generation due to viscous dissipation per unit volume \( \left( {{{\text{J}} \mathord{\left/ {\vphantom {{\text{J}} {\left( {{\text{s}}\,{\text{K}}} \right){\text{ m}}^{ 3} \, }}} \right. \kern-0pt} {\left( {{\text{s}}\,{\text{K}}} \right){\text{ m}}^{ 3} \, }}} \right) \)

V :

Velocity \( \left( {{{\text{m}} \mathord{\left/ {\vphantom {{\text{m}} {\text{s}}}} \right. \kern-0pt} {\text{s}}}} \right) \)

ρ :

Density \( \left( {{{\text{kg}} \mathord{\left/ {\vphantom {{\text{kg}} {{\text{m}}^{ 3} }}} \right. \kern-0pt} {{\text{m}}^{ 3} }}} \right) \)

µ :

Viscosity \( \left( {{{\text{kg}} \mathord{\left/ {\vphantom {{\text{kg}} {{\text{m}}\,{\text{s}}}}} \right. \kern-0pt} {{\text{m}}\,{\text{s}}}}} \right) \)

Φ :

Concentration

λ :

Thermal conductivity \( \left( {{{\text{W}} \mathord{\left/ {\vphantom {{\text{W}} {{\text{m}}\,{\text{K}}}}} \right. \kern-0pt} {{\text{m}}\,{\text{K}}}}} \right) \)

ΔP :

Pressure Drop \( \left( {{{\text{N}} \mathord{\left/ {\vphantom {{\text{N}} {{\text{m}}^{ 2} }}} \right. \kern-0pt} {{\text{m}}^{ 2} }}} \right) \)

References

  • Bahaidarah, H.M., Anand, N.K., Chen, H.C.: Numerical study of fluid flow and heat transfer over a series of in-line noncircular tubes confined in a parallel-plate channel. Numer. Heat Transf. Part B 50, 97–119 (2006)

    Article  Google Scholar 

  • Bird, R.B., Stewart, W.E., Lightfoot, E.N.: Transport Phenomena, 2nd edn. John Willy & Sons Inc, New York (2002)

    Google Scholar 

  • Choi, S.U.S.: Enhancing thermal conductivity of fluids with nanoparticle. In: Siginer, D.A., Wang, H.P. (eds.) Developments and Applications of Non-Newtonian Flows, ASME MD 231 and FED 66, pp. 99–105 (1995)

    Google Scholar 

  • Chun, B.H., Kang, H.U., Kim, S.H.: Effect of alumina nanoparticles in the fluid on heat transfer in double-pipe heat exchanger system. Korean J. Chem. Eng. 25, 966–971 (2008)

    Article  CAS  Google Scholar 

  • Keblinski, P., Philpot, S.R., Choi, S.U.S., Eastman, J.A.: Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids). Int. J. Heat Mass Transf. 45, 855–863 (2002)

    Google Scholar 

  • Khapre, A., Munshi, B.: Numerical investigation of hydrodynamic behavior of shear thinning fluids in stirred tank. J. Taiwan Inst. Chem. Eng. 56, 16–27 (2015)

    Article  CAS  Google Scholar 

  • Li, Q., Xuan, Y.: Experimental investigation on convective heat transfer of nanofluids. J. Eng. Thermophys. 23, 721–723 (2002)

    CAS  Google Scholar 

  • Manca, O., Mesolella, P., Nardini, S., Ricci, D.: Numerical study of a confined slot impinging jet with nanofluids. Nanoscale Res. Lett. 6, 1–16 (2011)

    Article  Google Scholar 

  • Manca, O., Nardini, S., Ricci, D., Tamburrino, S.: Numerical investigation on mixed convection in triangular cross-section ducts with nanofluids. Adv. Mech. Eng. Article ID 139370 (2012)

    Google Scholar 

  • Masuda, H., Ebata, A., Teramae, K., Hishinuma, N.: Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles. Netsu Bussei 7, 227–233 (1993)

    Article  CAS  Google Scholar 

  • Wang, X.Q., Mujumdar, A.S.: Heat transfer characteristics of nanofluids: a review. Int. J. Therm. Sci. 46, 1–19 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Khapre .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this paper

Cite this paper

Mohammad, I., Khapre, A., Keshav, A. (2016). Numerical Study of Heat Transfer Characteristics of Nano-fluids in Channel Containing Different Shapes of Submerged Tube. In: Regupathi, I., Shetty K, V., Thanabalan, M. (eds) Recent Advances in Chemical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-10-1633-2_1

Download citation

Publish with us

Policies and ethics