Advertisement

Numerical Study of Heat Transfer Characteristics of Nano-fluids in Channel Containing Different Shapes of Submerged Tube

  • I. Mohammad
  • A. KhapreEmail author
  • A. Keshav
Conference paper

Abstract

The convective heat transfer coefficient of nanofluids in a channel has been numerically studied for the laminar flow condition. The channel has been confined with inline noncircular tubes. The computational channel has aspect ratios of 10 × 0.66 cm2 with five different circular and non-circular tubes placed in series one after another. The 2D numerical simulation has been solved for different Reynolds number (Re) and the heat transfer coefficient and pressure drops were determined. A custom field function has been written to calculate the entropy generation. The simulation results showed that the Nusselt number and the heat transfer coefficient enhanced with the increase in nanoparticles concentration in nanofluid. From the entropy generation results, it can be predicted that entropy of system increased as concentration of nanoparticles increase. Entropy of the channel with obround tubes was found to be much higher than other geometry of tubes (circular, oval, diamond and rhombus).

Keywords

Nanofluids Reynolds number Nusselt number Entropy generation Non circular tubes 

List of symbols

Cp

Specific heat \( \left( {{{\text{J}} \mathord{\left/ {\vphantom {{\text{J}} {{\text{kg}}\,{\text{K}}}}} \right. \kern-0pt} {{\text{kg}}\,{\text{K}}}}} \right) \)

D

Diameter of in-line tube \( \left( {\text{cm}} \right) \)

H

Diameter of channel \( \left( {\text{cm}} \right) \)

L

Length of single module \( \left( {\text{cm}} \right) \)

Nu

Nusselt number

Re

Reynolds number

\( \dot{S}_{gen} \)

Total entropy generation per unit volume \( \left( {{{\text{J}} \mathord{\left/ {\vphantom {{\text{J}} {\left( {{\text{s}}\,{\text{K}}} \right){\text{ m}}^{ 3} \, }}} \right. \kern-0pt} {\left( {{\text{s}}\,{\text{K}}} \right){\text{ m}}^{ 3} \, }}} \right) \)

\( \dot{S}_{HT} \)

Entropy generation due to heat transfer per unit volume \( \left( {{{\text{J}} \mathord{\left/ {\vphantom {{\text{J}} {\left( {{\text{s}}\,{\text{K}}} \right){\text{ m}}^{ 3} \, }}} \right. \kern-0pt} {\left( {{\text{s}}\,{\text{K}}} \right){\text{ m}}^{ 3} \, }}} \right) \)

\( \dot{S}_{VD} \)

Entropy generation due to viscous dissipation per unit volume \( \left( {{{\text{J}} \mathord{\left/ {\vphantom {{\text{J}} {\left( {{\text{s}}\,{\text{K}}} \right){\text{ m}}^{ 3} \, }}} \right. \kern-0pt} {\left( {{\text{s}}\,{\text{K}}} \right){\text{ m}}^{ 3} \, }}} \right) \)

V

Velocity \( \left( {{{\text{m}} \mathord{\left/ {\vphantom {{\text{m}} {\text{s}}}} \right. \kern-0pt} {\text{s}}}} \right) \)

ρ

Density \( \left( {{{\text{kg}} \mathord{\left/ {\vphantom {{\text{kg}} {{\text{m}}^{ 3} }}} \right. \kern-0pt} {{\text{m}}^{ 3} }}} \right) \)

µ

Viscosity \( \left( {{{\text{kg}} \mathord{\left/ {\vphantom {{\text{kg}} {{\text{m}}\,{\text{s}}}}} \right. \kern-0pt} {{\text{m}}\,{\text{s}}}}} \right) \)

Φ

Concentration

λ

Thermal conductivity \( \left( {{{\text{W}} \mathord{\left/ {\vphantom {{\text{W}} {{\text{m}}\,{\text{K}}}}} \right. \kern-0pt} {{\text{m}}\,{\text{K}}}}} \right) \)

ΔP

Pressure Drop \( \left( {{{\text{N}} \mathord{\left/ {\vphantom {{\text{N}} {{\text{m}}^{ 2} }}} \right. \kern-0pt} {{\text{m}}^{ 2} }}} \right) \)

References

  1. Bahaidarah, H.M., Anand, N.K., Chen, H.C.: Numerical study of fluid flow and heat transfer over a series of in-line noncircular tubes confined in a parallel-plate channel. Numer. Heat Transf. Part B 50, 97–119 (2006)CrossRefGoogle Scholar
  2. Bird, R.B., Stewart, W.E., Lightfoot, E.N.: Transport Phenomena, 2nd edn. John Willy & Sons Inc, New York (2002)Google Scholar
  3. Choi, S.U.S.: Enhancing thermal conductivity of fluids with nanoparticle. In: Siginer, D.A., Wang, H.P. (eds.) Developments and Applications of Non-Newtonian Flows, ASME MD 231 and FED 66, pp. 99–105 (1995)Google Scholar
  4. Chun, B.H., Kang, H.U., Kim, S.H.: Effect of alumina nanoparticles in the fluid on heat transfer in double-pipe heat exchanger system. Korean J. Chem. Eng. 25, 966–971 (2008)CrossRefGoogle Scholar
  5. Keblinski, P., Philpot, S.R., Choi, S.U.S., Eastman, J.A.: Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids). Int. J. Heat Mass Transf. 45, 855–863 (2002)Google Scholar
  6. Khapre, A., Munshi, B.: Numerical investigation of hydrodynamic behavior of shear thinning fluids in stirred tank. J. Taiwan Inst. Chem. Eng. 56, 16–27 (2015)CrossRefGoogle Scholar
  7. Li, Q., Xuan, Y.: Experimental investigation on convective heat transfer of nanofluids. J. Eng. Thermophys. 23, 721–723 (2002)Google Scholar
  8. Manca, O., Mesolella, P., Nardini, S., Ricci, D.: Numerical study of a confined slot impinging jet with nanofluids. Nanoscale Res. Lett. 6, 1–16 (2011)CrossRefGoogle Scholar
  9. Manca, O., Nardini, S., Ricci, D., Tamburrino, S.: Numerical investigation on mixed convection in triangular cross-section ducts with nanofluids. Adv. Mech. Eng. Article ID 139370 (2012)Google Scholar
  10. Masuda, H., Ebata, A., Teramae, K., Hishinuma, N.: Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles. Netsu Bussei 7, 227–233 (1993)CrossRefGoogle Scholar
  11. Wang, X.Q., Mujumdar, A.S.: Heat transfer characteristics of nanofluids: a review. Int. J. Therm. Sci. 46, 1–19 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Singapore 2016

Authors and Affiliations

  1. 1.Department of Chemical EngineeringNational Institute of TechnologyRaipurIndia

Personalised recommendations