Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 304 Accesses

Abstract

In this chapter, we describe the techniques for automatic one-loop scattering amplitude computations by using MadGraph5 [1], which is dubbed as MadLoop5 . It is an important component in the MadGraph5_aMC@NLO [2] framework. In order to avoid possible confusions between MadLoop5 and the original MadLoop4 [3], we want to emphasize here that the core functionalities relevant to the handling of tree-level amplitudes are inherited from MadGraph4 [4] in MadLoop4, whereas MadLoop5 uses MadGraph5. There are significant improvements in MadLoop5 compared to MadLoop4. Some of them are still not public.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    MadLoop4 is written in C++, whereas MadLoop5 is completely rewritten in Python and output in Fortran.

  2. 2.

    I joined in the MadGraph5_aMC@NLO project from September 2012. Under ERC grant LHC theory, I stayed at CERN for one year. Since then, I am collaborating with Dr. Valentin Hirschi in developing MadLoop5.

  3. 3.

    The reader who is interested in regularization schemes can refer to Refs. [5, 6] and references therein.

  4. 4.

    We follow the notations in Ref. [2].

  5. 5.

    The new version of FeynRules for generating NLO model will be published in the near future.

  6. 6.

    \(G_{\mu }\) is the fermion constant.

  7. 7.

    TIR interface is only available in the private version. It will be contained in the future release.

  8. 8.

    It is only available in optimized mode of the private version.

  9. 9.

    The accuracy of the coefficients \(c_j\) reported here in quadruple precision is beyond 17 digits.

  10. 10.

    I want to thank Celine Degrande and Benjamin Fuks here for providing us the model.

References

  1. J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer, T. Stelzer, JHEP 06, 128 (2011). doi:10.1007/JHEP06(2011)128

    Article  ADS  Google Scholar 

  2. J. Alwall, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, O. Mattelaer, H.S. Shao, T. Stelzer, P. Torrielli, M. Zaro, JHEP 07, 079 (2014). doi:10.1007/JHEP07(2014)079

    Article  ADS  Google Scholar 

  3. V. Hirschi, R. Frederix, S. Frixione, M.V. Garzelli, F. Maltoni et al., JHEP 1105, 044 (2011). doi:10.1007/JHEP05(2011)044

    Article  ADS  Google Scholar 

  4. J. Alwall et al., JHEP 09, 028 (2007). doi:10.1088/1126-6708/2007/09/028

    Article  ADS  Google Scholar 

  5. H.S. Shao, Y.J. Zhang, K.T. Chao, Phys. Rev. D 84, 094021 (2011). doi:10.1103/PhysRevD.84.094021

    Article  ADS  Google Scholar 

  6. H.S. Shao, Y.J. Zhang, K.T. Chao, JHEP 1201, 053 (2012). doi:10.1007/JHEP01(2012)053

    Article  ADS  Google Scholar 

  7. G. ’t Hooft, M.J.G. Veltman, Nucl. Phys. B44, 189 (1972). doi:10.1016/0550-3213(72)90279-9

    Google Scholar 

  8. C. Degrande, C. Duhr, B. Fuks, D. Grellscheid, O. Mattelaer et al., Comput. Phys. Commun. 183, 1201 (2012). doi:10.1016/j.cpc.2012.01.022

    Article  ADS  Google Scholar 

  9. S. Dittmaier, Kramer, Michael. Phys. Rev. D 65, 073007 (2002). doi:10.1103/PhysRevD.65.073007

    Article  ADS  Google Scholar 

  10. A. Denner, Fortschr. Phys. 41, 307 (1993)

    Google Scholar 

  11. P. de Aquino, W. Link, F. Maltoni, O. Mattelaer, T. Stelzer, Comput. Phys. Commun. 183, 2254 (2012). doi:10.1016/j.cpc.2012.05.004

    Article  ADS  Google Scholar 

  12. A. van Hameren, C. Papadopoulos, R. Pittau, JHEP 0909, 106 (2009). doi:10.1088/1126-6708/2009/09/106

    Article  ADS  Google Scholar 

  13. V. Hirschi, Automation of one-loop computations for scattering amplitudes and applications to collider phenomenology. Ph.D. thesis, Ecole Polytechnique Federale de Lausanne (2013). http://infoscience.epfl.ch/record/186388/files/EPFL_TH5736.pdf

  14. G. Ossola, C.G. Papadopoulos, R. Pittau, JHEP 03, 042 (2008). doi:10.1088/1126-6708/2008/03/042

    Article  ADS  Google Scholar 

  15. V. Yundin, Massive loop corrections for collider physics. Ph.D. thesis, Humboldt-Universitat zu Berlin (2012). http://edoc.hu-berlin.de/docviews/abstract.php?id=39163

  16. J. Fleischer, T. Riemann, V. Yundin, PoS LL2012, 020 (2012)

    Google Scholar 

  17. H.S. Shao, unpublished

    Google Scholar 

  18. A. Denner, S. Dittmaier, M. Roth, L.H. Wieders, Nucl. Phys. B 724, 247 (2005). doi:10.1016/j.nuclphysb.2005.06.033

    Article  ADS  Google Scholar 

  19. F. Cascioli, P. Maierhofer, S. Pozzorini, Phys. Rev. Lett. 108, 111601 (2012). doi:10.1103/PhysRevLett.108.111601

    Article  ADS  Google Scholar 

  20. R. Pittau, Comput. Phys. Commun. 181, 1941 (2010). doi:10.1016/j.cpc.2010.09.013

    Article  ADS  Google Scholar 

  21. R.K. Ellis, J. Sexton, Nucl. Phys. B 269, 445 (1986). doi:10.1016/0550-3213(86)90232-4

    Article  ADS  Google Scholar 

  22. R. Kleiss, W. Stirling, S. Ellis, Comput. Phys. Commun. 40, 359 (1986). doi:10.1016/0010-4655(86)90119-0

    Article  ADS  Google Scholar 

  23. R. Frederix, S. Frixione, F. Maltoni, T. Stelzer, JHEP 0910, 003 (2009). doi:10.1088/1126-6708/2009/10/003

    Article  ADS  Google Scholar 

  24. W. Beenakker, S. Dittmaier, M. Kramer, B. Plumper, M. Spira et al., Nucl. Phys. B 653, 151 (2003). doi:10.1016/S0550-3213(03)00044-0

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua-Sheng Shao .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Shao, HS. (2016). MadLoop5. In: Heavy Quarkonium Production Phenomenology and Automation of One-Loop Scattering Amplitude Computations. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-10-1624-0_9

Download citation

Publish with us

Policies and ethics