Skip to main content

Recent Progress in High-Throughput Detection Technology for Food Safety

  • Chapter
  • First Online:
  • 837 Accesses

Abstract

Nucleic acid detection (specifically, DNA and RNA analysis) is of great importance to clinical diagnosis, forensic analysis, biological and biomedical fields, and food safety. Because of the increasing number of targets to be detected, traditional single detection techniques cannot fulfill the necessary requirements. Hence, multiple and high-throughput detection methods have been developed. These technologies can save time and reduce costs; moreover, the validation of their results is simpler and more intuitive. This review mainly describes the basic principle as well as the advantages and applications of each commonly used high-throughput detection method.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Pinar A, Bozdemir N, Kocagoz T, Alacam R. Rapid detection of bacterial atypical pneumonia agents by multiplex PCR. Cent Eur J Public Health. 2004;12(1):3–5.

    Article  CAS  PubMed  Google Scholar 

  2. Ding C, Cantor CR. A high-throughput gene expression analysis technique using competitive PCR and matrix-assisted laser desorption ionization time-of-flight MS. Proc Natl Acad Sci. 2003;100(6):3059–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hess C, Denkers F, Ossenkoppele G, Waisfisz Q, McElgunn C, Eldering E, Schouten J, Schuurhuis G. Gene expression profiling of minimal residual disease in acute myeloid leukaemia by novel multiplex-PCR-based method. Leukemia. 2004;18(12):1981–8.

    Article  CAS  PubMed  Google Scholar 

  4. Tettelin H, Radune D, Kasif S, Khouri H, Salzberg SL. Optimized multiplex PCR: efficiently closing a whole-genome shotgun sequencing project. Genomics. 1999;62(3):500–7.

    Article  CAS  PubMed  Google Scholar 

  5. Inagaki S, Yamamoto Y, Doi Y, Takata T, Ishikawa T, Imabayashi K, Yoshitome K, Miyaishi S, Ishizu H. A new 39-plex analysis method for SNPs including 15 blood group loci. Forensic Sci Int. 2004;144(1):45–57.

    Article  CAS  PubMed  Google Scholar 

  6. Wen-Tao X, Wei-Bin B, Yun-Bo L, Yan-Fang Y, Kun-Lun H. Research progress in techniques for detecting genetically modified organisms. Chin J Agric Biotechnol. 2009;6(01):1–9.

    Article  Google Scholar 

  7. Huang H-Y, Pan T-M. Detection of genetically modified maize MON810 and NK603 by multiplex and real-time polymerase chain reaction methods. J Agric Food Chem. 2004;52(11):3264–8.

    Article  CAS  PubMed  Google Scholar 

  8. Germini A, Zanetti A, Salati C, Rossi S, Forré C, Schmid S, Marchelli R. Development of a seven-target multiplex PCR for the simultaneous detection of transgenic soybean and maize in feeds and foods. J Agric Food Chem. 2004;52(11):3275–80.

    Article  CAS  PubMed  Google Scholar 

  9. Xu W, Zhai Z, Huang K, Zhang N, Yuan Y, Shang Y, Luo Y. A novel universal primer-multiplex-PCR method with sequencing gel electrophoresis analysis. PLoS ONE. 2012;7(1), e22900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Xu W, Yuan Y, Luo Y, Bai W, Zhang C, Huang K. Event-specific detection of stacked genetically modified maize Bt11× GA21 by UP-M-PCR and Real-Time PCR. J Agric Food Chem. 2008;57(2):395–402.

    Article  Google Scholar 

  11. Xu W, Bai W, Luo Y, Yuan Y, Zhang W, Guo X, Huang K. A novel common single primer multiplex polymerase chain reaction (CSP‐M‐PCR) method for the identification of animal species in minced meat. J Sci Food Agric. 2008;88(15):2631–7.

    Article  CAS  Google Scholar 

  12. Yuan Y, Xu W, Zhai Z, Shi H, Luo Y, Chen Z, Huang K. Universal primer‐multiplex PCR approach for simultaneous detection of Escherichia coli, Listeria monocytogenes, and Salmonella spp. in food samples. J Food Sci. 2009;74(8):M446–52.

    Article  CAS  PubMed  Google Scholar 

  13. Zhang C, Xu W, Zhai Z, Luo Y, Yan X, Zhang N, Huang K. Universal primer-multiplex-polymerase chain reaction (UP-M-PCR) and capillary electrophoresis–laser-induced fluorescence analysis for the simultaneous detection of six genetically modified maize lines. J Agric Food Chem. 2011;59(10):5188–94.

    Article  CAS  PubMed  Google Scholar 

  14. Schouten JP, McElgunn CJ, Waaijer R, Zwijnenburg D, Diepvens F, Pals G. Relative quantification of 40 nucleic acid sequences by multiplex ligation-dependent probe amplification. Nucleic Acids Res. 2002;30(12):e57–7.

    Google Scholar 

  15. Véronèse L, Tournilhac O, Combes P, Prie N, Pierre-Eymard E, Guièze R, Veyrat-Masson R, Bay J-O, Vago P, Tchirkov A. Contribution of MLPA to routine diagnostic testing of recurrent genomic aberrations in chronic lymphocytic leukemia. Cancer Genet. 2013;206(1):19–25.

    Article  PubMed  Google Scholar 

  16. Cui J, Azimi M, Adekile AD, Al Awadhi H, Hoppe CC. Detection of anti-Lepore Hb P-Nilotic by multiplex ligation-dependent probe amplification. Hemoglobin. 2012;36(3):276–82.

    Article  CAS  PubMed  Google Scholar 

  17. Moreano F, Ehlert A, Busch U, Engel K-H. Ligation-dependent probe amplification for the simultaneous event-specific detection and relative quantification of DNA from two genetically modified organisms. Eur Food Res Technol. 2006;222(5–6):479–85.

    Article  CAS  Google Scholar 

  18. Holck A, Vaitilingom M, Didierjean L, Rudi K. 5′-Nuclease PCR for quantitative event-specific detection of the genetically modified Mon810 MaisGard maize. Eur Food Res Technol. 2002;214(5):449–54.

    Article  CAS  Google Scholar 

  19. Ehlert A, Moreano F, Busch U, Engel K-H. Development of a modular system for detection of genetically modified organisms in food based on ligation-dependent probe amplification. Eur Food Res Technol. 2008;227(3):805–12.

    Article  CAS  Google Scholar 

  20. Shang Y, Zhu P, Xu W, Guo T, Tian W, Luo Y, Huang K. Single universal primer multiplex ligation-dependent probe amplification with sequencing gel electrophoresis analysis. Anal Biochem. 2013;443(2):243–8.

    Article  CAS  PubMed  Google Scholar 

  21. Shrestha HK, Hwu K-K, Wang S-J, Liu L-F, Chang M-C. Simultaneous detection of eight genetically modified maize lines using a combination of event-and construct-specific multiplex-PCR technique. J Agric Food Chem. 2008;56(19):8962–8.

    Article  CAS  PubMed  Google Scholar 

  22. Lalic T, Vossen RH, Coffa J, Schouten JP, Guc-Scekic M, Radivojevic D, Djurisic M, Breuning MH, White SJ, den Dunnen JT. Deletion and duplication screening in the DMD gene using MLPA. Eur J Hum Genet. 2005;13(11):1231–4.

    Article  CAS  PubMed  Google Scholar 

  23. Wu H, Wu W, Chen Z, Wang W, Zhou G, Kajiyama T, Kambara H. Highly sensitive pyrosequencing based on the capture of free adenosine 5′ phosphosulfate with adenosine triphosphate sulfurylase. Anal Chem. 2011;83(9):3600–5.

    Article  CAS  PubMed  Google Scholar 

  24. Song Q, Wei G, Zhou G. Analysis of genetically modified organisms by pyrosequencing on a portable photodiode-based bioluminescence sequencer. Food Chem. 2014;154:78–83.

    Article  CAS  PubMed  Google Scholar 

  25. Colella S, Shen L, Baggerly K, Issa J, Krahe R. Sensitive and quantitative universal Pyrosequencing™ methylation analysis of CpG sites. Biotechniques. 2003;35(1):146–51.

    CAS  PubMed  Google Scholar 

  26. Zhong Q, Bhattacharya S, Kotsopoulos S, Olson J, Taly V, Griffiths AD, Link DR, Larson JW. Multiplex digital PCR: breaking the one target per color barrier of quantitative PCR. Lab Chip. 2011;11(13):2167–74.

    Article  CAS  PubMed  Google Scholar 

  27. Burns M, Burrell A, Foy C. The applicability of digital PCR for the assessment of detection limits in GMO analysis. Eur Food Res Technol. 2010;231(3):353–62.

    Article  CAS  Google Scholar 

  28. Ottesen EA, Hong JW, Quake SR, Leadbetter JR. Microfluidic digital PCR enables multigene analysis of individual environmental bacteria. Science. 2006;314(5804):1464–7.

    Article  CAS  PubMed  Google Scholar 

  29. Sun Y, Dhumpa R, Bang DD, Høgberg J, Handberg K, Wolff A. A lab-on-a-chip device for rapid identification of avian influenza viral RNA by solid-phase PCR. Lab Chip. 2011;11(8):1457–63.

    Article  CAS  PubMed  Google Scholar 

  30. Adessi C, Matton G, Ayala G, Turcatti G, Mermod J-J, Mayer P, Kawashima E. Solid phase DNA amplification: characterisation of primer attachment and amplification mechanisms. Nucleic Acids Res. 2000;28(20):e87–7.

    Google Scholar 

  31. Kranaster R, Ketzer P, Marx A. Mutant DNA polymerase for improved detection of single‐nucleotide variations in microarrayed primer extension. ChemBioChem. 2008;9(5):694–7.

    Article  CAS  PubMed  Google Scholar 

  32. Khodakov DA, Zakharova NV, Gryadunov DA, Filatov FP, Zasedatelev AS, Mikhailovich VM. An oligonucleotide microarray for multiplex real-time PCR identification of HIV-1, HBV, and HCV. Biotechniques. 2008;44(2):241.

    Article  CAS  PubMed  Google Scholar 

  33. Hoffmann J, Hin S, von Stetten F, Zengerle R, Roth G. Universal protocol for grafting PCR primers onto various lab-on-a-chip substrates for solid-phase PCR. RSC Adv. 2012;2(9):3885–9.

    Article  CAS  Google Scholar 

  34. Liu-Stratton Y, Roy S, Sen CK. DNA microarray technology in nutraceutical and food safety. Toxicol Lett. 2004;150(1):29–42.

    Article  CAS  PubMed  Google Scholar 

  35. Holzhauser T, Stephan O, Vieths S. Detection of potentially allergenic hazelnut (Corylus avellana) residues in food: a comparative study with DNA PCR-ELISA and protein sandwich-ELISA. J Agric Food Chem. 2002;50(21):5808–15.

    Article  CAS  PubMed  Google Scholar 

  36. Ge B, Zhao S, Hall R, Meng J. A PCR–ELISA for detecting Shiga toxin-producing Escherichia coli. Microbes Infect. 2002;4(3):285–90.

    Article  CAS  PubMed  Google Scholar 

  37. Taboada L, Sánchez A, Velasco A, Santaclara FJ, Pérez-Martín RI, Sotelo CG. Identification of Atlantic Cod (Gadus morhua), Ling (Molva molva), and Alaska Pollock (Gadus chalcogrammus) by PCR–ELISA Using Duplex PCR. J Agric Food Chem. 2014;62(24):5699–706.

    Article  CAS  PubMed  Google Scholar 

  38. Kopp MU, De Mello AJ, Manz A. Chemical amplification: continuous-flow PCR on a chip. Science. 1998;280(5366):1046–8.

    Article  CAS  PubMed  Google Scholar 

  39. Wang Y, Cai Y, Liu T, Ong Z, Wang N, Wang Z. Development and application of liquid chip test for Staphylococcus aureus. Chin J Biol. 2012;25(10):1383–6.

    CAS  Google Scholar 

  40. Lü D, Shi X, Chen M, Wu P, He L, Li Y, Lin Y, Qiu Y, Hu Q. Development of a xMAP liquid chip assay for the rapid identification of 7 common foodborne pathogens and its application. Wei sheng yan jiu= J Hyg Res. 2012;41(1):96–101.

    Google Scholar 

  41. Chen J, Xu F, Jiang H, Hou Y, Rao Q, Guo P, Ding S. A novel quantum dot-based fluoroimmunoassay method for detection of Enrofloxacin residue in chicken muscle tissue. Food Chem. 2009;113(4):1197–201.

    Article  CAS  Google Scholar 

  42. Yang L, Li Y. Simultaneous detection of Escherichia coli O157∶ H7 and Salmonella Typhimurium using quantum dots as fluorescence labels. Analyst. 2006;131(3):394–401.

    Article  CAS  PubMed  Google Scholar 

  43. Su S, Fan J, Xue B, Yuwen L, Liu X, Pan D, Fan C, Wang L. DNA-conjugated quantum dot nanoprobe for high-sensitivity fluorescent detection of DNA and micro-RNA. ACS Appl Mater Interfaces. 2014;6(2):1152–7.

    Article  CAS  PubMed  Google Scholar 

  44. Jiang X, Shao N, Jing W, Tao S, Liu S, Sui G. Microfluidic chip integrating high throughput continuous-flow PCR and DNA hybridization for bacteria analysis. Talanta. 2014;122:246–50.

    Article  CAS  PubMed  Google Scholar 

  45. Peter C, Meusel M, Grawe F, Katerkamp A, Cammann K, Börchers T. Optical DNA-sensor chip for real-time detection of hybridization events. Fresenius J Anal Chem. 2001;371(2):120–7.

    Article  CAS  PubMed  Google Scholar 

  46. Mathew FP, Alocilja EC. Porous silicon-based biosensor for pathogen detection. Biosens Bioelectron. 2005;20(8):1656–61.

    Article  CAS  PubMed  Google Scholar 

  47. Zeng S, Baillargeat D, Ho H-P, Yong K-T. Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications. Chem Soc Rev. 2014;43(10):3426–52.

    Article  CAS  PubMed  Google Scholar 

  48. Rich RL, Myszka DG. BIACORE J: a new platform for routine biomolecular interaction analysis†. J Mol Recognit. 2001;14(4):223–8.

    Article  CAS  PubMed  Google Scholar 

  49. Indyk HE, Persson BS, Caselunghe MC, Moberg A, Filonzi EL, Woollard DC. Determination of vitamin B12 in milk products and selected foods by optical biosensor protein-binding assay: method comparison. J AOAC Int. 2002;85(1):72–81.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Science and Technology Major Project (2016ZX08012-001). Many thanks to Ying Shang for her kindly help in manuscript conception and preparation.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Xu, W. (2016). Recent Progress in High-Throughput Detection Technology for Food Safety. In: Functional Nucleic Acids Detection in Food Safety. Springer, Singapore. https://doi.org/10.1007/978-981-10-1618-9_9

Download citation

Publish with us

Policies and ethics