Advertisement

Recent Progress in High-Throughput Detection Technology for Food Safety

  • Wentao Xu
Chapter

Abstract

Nucleic acid detection (specifically, DNA and RNA analysis) is of great importance to clinical diagnosis, forensic analysis, biological and biomedical fields, and food safety. Because of the increasing number of targets to be detected, traditional single detection techniques cannot fulfill the necessary requirements. Hence, multiple and high-throughput detection methods have been developed. These technologies can save time and reduce costs; moreover, the validation of their results is simpler and more intuitive. This review mainly describes the basic principle as well as the advantages and applications of each commonly used high-throughput detection method.

Keywords

Multiplex PCR Universal primer High-throughput detection DNA chips Pyrosequencing 

Notes

Acknowledgments

This work is supported by the National Science and Technology Major Project (2016ZX08012-001). Many thanks to Ying Shang for her kindly help in manuscript conception and preparation.

References

  1. 1.
    Pinar A, Bozdemir N, Kocagoz T, Alacam R. Rapid detection of bacterial atypical pneumonia agents by multiplex PCR. Cent Eur J Public Health. 2004;12(1):3–5.PubMedCrossRefGoogle Scholar
  2. 2.
    Ding C, Cantor CR. A high-throughput gene expression analysis technique using competitive PCR and matrix-assisted laser desorption ionization time-of-flight MS. Proc Natl Acad Sci. 2003;100(6):3059–64.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Hess C, Denkers F, Ossenkoppele G, Waisfisz Q, McElgunn C, Eldering E, Schouten J, Schuurhuis G. Gene expression profiling of minimal residual disease in acute myeloid leukaemia by novel multiplex-PCR-based method. Leukemia. 2004;18(12):1981–8.PubMedCrossRefGoogle Scholar
  4. 4.
    Tettelin H, Radune D, Kasif S, Khouri H, Salzberg SL. Optimized multiplex PCR: efficiently closing a whole-genome shotgun sequencing project. Genomics. 1999;62(3):500–7.PubMedCrossRefGoogle Scholar
  5. 5.
    Inagaki S, Yamamoto Y, Doi Y, Takata T, Ishikawa T, Imabayashi K, Yoshitome K, Miyaishi S, Ishizu H. A new 39-plex analysis method for SNPs including 15 blood group loci. Forensic Sci Int. 2004;144(1):45–57.PubMedCrossRefGoogle Scholar
  6. 6.
    Wen-Tao X, Wei-Bin B, Yun-Bo L, Yan-Fang Y, Kun-Lun H. Research progress in techniques for detecting genetically modified organisms. Chin J Agric Biotechnol. 2009;6(01):1–9.CrossRefGoogle Scholar
  7. 7.
    Huang H-Y, Pan T-M. Detection of genetically modified maize MON810 and NK603 by multiplex and real-time polymerase chain reaction methods. J Agric Food Chem. 2004;52(11):3264–8.PubMedCrossRefGoogle Scholar
  8. 8.
    Germini A, Zanetti A, Salati C, Rossi S, Forré C, Schmid S, Marchelli R. Development of a seven-target multiplex PCR for the simultaneous detection of transgenic soybean and maize in feeds and foods. J Agric Food Chem. 2004;52(11):3275–80.PubMedCrossRefGoogle Scholar
  9. 9.
    Xu W, Zhai Z, Huang K, Zhang N, Yuan Y, Shang Y, Luo Y. A novel universal primer-multiplex-PCR method with sequencing gel electrophoresis analysis. PLoS ONE. 2012;7(1), e22900.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Xu W, Yuan Y, Luo Y, Bai W, Zhang C, Huang K. Event-specific detection of stacked genetically modified maize Bt11× GA21 by UP-M-PCR and Real-Time PCR. J Agric Food Chem. 2008;57(2):395–402.CrossRefGoogle Scholar
  11. 11.
    Xu W, Bai W, Luo Y, Yuan Y, Zhang W, Guo X, Huang K. A novel common single primer multiplex polymerase chain reaction (CSP‐M‐PCR) method for the identification of animal species in minced meat. J Sci Food Agric. 2008;88(15):2631–7.CrossRefGoogle Scholar
  12. 12.
    Yuan Y, Xu W, Zhai Z, Shi H, Luo Y, Chen Z, Huang K. Universal primer‐multiplex PCR approach for simultaneous detection of Escherichia coli, Listeria monocytogenes, and Salmonella spp. in food samples. J Food Sci. 2009;74(8):M446–52.PubMedCrossRefGoogle Scholar
  13. 13.
    Zhang C, Xu W, Zhai Z, Luo Y, Yan X, Zhang N, Huang K. Universal primer-multiplex-polymerase chain reaction (UP-M-PCR) and capillary electrophoresis–laser-induced fluorescence analysis for the simultaneous detection of six genetically modified maize lines. J Agric Food Chem. 2011;59(10):5188–94.PubMedCrossRefGoogle Scholar
  14. 14.
    Schouten JP, McElgunn CJ, Waaijer R, Zwijnenburg D, Diepvens F, Pals G. Relative quantification of 40 nucleic acid sequences by multiplex ligation-dependent probe amplification. Nucleic Acids Res. 2002;30(12):e57–7.Google Scholar
  15. 15.
    Véronèse L, Tournilhac O, Combes P, Prie N, Pierre-Eymard E, Guièze R, Veyrat-Masson R, Bay J-O, Vago P, Tchirkov A. Contribution of MLPA to routine diagnostic testing of recurrent genomic aberrations in chronic lymphocytic leukemia. Cancer Genet. 2013;206(1):19–25.PubMedCrossRefGoogle Scholar
  16. 16.
    Cui J, Azimi M, Adekile AD, Al Awadhi H, Hoppe CC. Detection of anti-Lepore Hb P-Nilotic by multiplex ligation-dependent probe amplification. Hemoglobin. 2012;36(3):276–82.PubMedCrossRefGoogle Scholar
  17. 17.
    Moreano F, Ehlert A, Busch U, Engel K-H. Ligation-dependent probe amplification for the simultaneous event-specific detection and relative quantification of DNA from two genetically modified organisms. Eur Food Res Technol. 2006;222(5–6):479–85.CrossRefGoogle Scholar
  18. 18.
    Holck A, Vaitilingom M, Didierjean L, Rudi K. 5′-Nuclease PCR for quantitative event-specific detection of the genetically modified Mon810 MaisGard maize. Eur Food Res Technol. 2002;214(5):449–54.CrossRefGoogle Scholar
  19. 19.
    Ehlert A, Moreano F, Busch U, Engel K-H. Development of a modular system for detection of genetically modified organisms in food based on ligation-dependent probe amplification. Eur Food Res Technol. 2008;227(3):805–12.CrossRefGoogle Scholar
  20. 20.
    Shang Y, Zhu P, Xu W, Guo T, Tian W, Luo Y, Huang K. Single universal primer multiplex ligation-dependent probe amplification with sequencing gel electrophoresis analysis. Anal Biochem. 2013;443(2):243–8.PubMedCrossRefGoogle Scholar
  21. 21.
    Shrestha HK, Hwu K-K, Wang S-J, Liu L-F, Chang M-C. Simultaneous detection of eight genetically modified maize lines using a combination of event-and construct-specific multiplex-PCR technique. J Agric Food Chem. 2008;56(19):8962–8.PubMedCrossRefGoogle Scholar
  22. 22.
    Lalic T, Vossen RH, Coffa J, Schouten JP, Guc-Scekic M, Radivojevic D, Djurisic M, Breuning MH, White SJ, den Dunnen JT. Deletion and duplication screening in the DMD gene using MLPA. Eur J Hum Genet. 2005;13(11):1231–4.PubMedCrossRefGoogle Scholar
  23. 23.
    Wu H, Wu W, Chen Z, Wang W, Zhou G, Kajiyama T, Kambara H. Highly sensitive pyrosequencing based on the capture of free adenosine 5′ phosphosulfate with adenosine triphosphate sulfurylase. Anal Chem. 2011;83(9):3600–5.PubMedCrossRefGoogle Scholar
  24. 24.
    Song Q, Wei G, Zhou G. Analysis of genetically modified organisms by pyrosequencing on a portable photodiode-based bioluminescence sequencer. Food Chem. 2014;154:78–83.PubMedCrossRefGoogle Scholar
  25. 25.
    Colella S, Shen L, Baggerly K, Issa J, Krahe R. Sensitive and quantitative universal Pyrosequencing™ methylation analysis of CpG sites. Biotechniques. 2003;35(1):146–51.PubMedGoogle Scholar
  26. 26.
    Zhong Q, Bhattacharya S, Kotsopoulos S, Olson J, Taly V, Griffiths AD, Link DR, Larson JW. Multiplex digital PCR: breaking the one target per color barrier of quantitative PCR. Lab Chip. 2011;11(13):2167–74.PubMedCrossRefGoogle Scholar
  27. 27.
    Burns M, Burrell A, Foy C. The applicability of digital PCR for the assessment of detection limits in GMO analysis. Eur Food Res Technol. 2010;231(3):353–62.CrossRefGoogle Scholar
  28. 28.
    Ottesen EA, Hong JW, Quake SR, Leadbetter JR. Microfluidic digital PCR enables multigene analysis of individual environmental bacteria. Science. 2006;314(5804):1464–7.PubMedCrossRefGoogle Scholar
  29. 29.
    Sun Y, Dhumpa R, Bang DD, Høgberg J, Handberg K, Wolff A. A lab-on-a-chip device for rapid identification of avian influenza viral RNA by solid-phase PCR. Lab Chip. 2011;11(8):1457–63.PubMedCrossRefGoogle Scholar
  30. 30.
    Adessi C, Matton G, Ayala G, Turcatti G, Mermod J-J, Mayer P, Kawashima E. Solid phase DNA amplification: characterisation of primer attachment and amplification mechanisms. Nucleic Acids Res. 2000;28(20):e87–7.Google Scholar
  31. 31.
    Kranaster R, Ketzer P, Marx A. Mutant DNA polymerase for improved detection of single‐nucleotide variations in microarrayed primer extension. ChemBioChem. 2008;9(5):694–7.PubMedCrossRefGoogle Scholar
  32. 32.
    Khodakov DA, Zakharova NV, Gryadunov DA, Filatov FP, Zasedatelev AS, Mikhailovich VM. An oligonucleotide microarray for multiplex real-time PCR identification of HIV-1, HBV, and HCV. Biotechniques. 2008;44(2):241.PubMedCrossRefGoogle Scholar
  33. 33.
    Hoffmann J, Hin S, von Stetten F, Zengerle R, Roth G. Universal protocol for grafting PCR primers onto various lab-on-a-chip substrates for solid-phase PCR. RSC Adv. 2012;2(9):3885–9.CrossRefGoogle Scholar
  34. 34.
    Liu-Stratton Y, Roy S, Sen CK. DNA microarray technology in nutraceutical and food safety. Toxicol Lett. 2004;150(1):29–42.PubMedCrossRefGoogle Scholar
  35. 35.
    Holzhauser T, Stephan O, Vieths S. Detection of potentially allergenic hazelnut (Corylus avellana) residues in food: a comparative study with DNA PCR-ELISA and protein sandwich-ELISA. J Agric Food Chem. 2002;50(21):5808–15.PubMedCrossRefGoogle Scholar
  36. 36.
    Ge B, Zhao S, Hall R, Meng J. A PCR–ELISA for detecting Shiga toxin-producing Escherichia coli. Microbes Infect. 2002;4(3):285–90.PubMedCrossRefGoogle Scholar
  37. 37.
    Taboada L, Sánchez A, Velasco A, Santaclara FJ, Pérez-Martín RI, Sotelo CG. Identification of Atlantic Cod (Gadus morhua), Ling (Molva molva), and Alaska Pollock (Gadus chalcogrammus) by PCR–ELISA Using Duplex PCR. J Agric Food Chem. 2014;62(24):5699–706.PubMedCrossRefGoogle Scholar
  38. 38.
    Kopp MU, De Mello AJ, Manz A. Chemical amplification: continuous-flow PCR on a chip. Science. 1998;280(5366):1046–8.PubMedCrossRefGoogle Scholar
  39. 39.
    Wang Y, Cai Y, Liu T, Ong Z, Wang N, Wang Z. Development and application of liquid chip test for Staphylococcus aureus. Chin J Biol. 2012;25(10):1383–6.Google Scholar
  40. 40.
    Lü D, Shi X, Chen M, Wu P, He L, Li Y, Lin Y, Qiu Y, Hu Q. Development of a xMAP liquid chip assay for the rapid identification of 7 common foodborne pathogens and its application. Wei sheng yan jiu= J Hyg Res. 2012;41(1):96–101.Google Scholar
  41. 41.
    Chen J, Xu F, Jiang H, Hou Y, Rao Q, Guo P, Ding S. A novel quantum dot-based fluoroimmunoassay method for detection of Enrofloxacin residue in chicken muscle tissue. Food Chem. 2009;113(4):1197–201.CrossRefGoogle Scholar
  42. 42.
    Yang L, Li Y. Simultaneous detection of Escherichia coli O157∶ H7 and Salmonella Typhimurium using quantum dots as fluorescence labels. Analyst. 2006;131(3):394–401.PubMedCrossRefGoogle Scholar
  43. 43.
    Su S, Fan J, Xue B, Yuwen L, Liu X, Pan D, Fan C, Wang L. DNA-conjugated quantum dot nanoprobe for high-sensitivity fluorescent detection of DNA and micro-RNA. ACS Appl Mater Interfaces. 2014;6(2):1152–7.PubMedCrossRefGoogle Scholar
  44. 44.
    Jiang X, Shao N, Jing W, Tao S, Liu S, Sui G. Microfluidic chip integrating high throughput continuous-flow PCR and DNA hybridization for bacteria analysis. Talanta. 2014;122:246–50.PubMedCrossRefGoogle Scholar
  45. 45.
    Peter C, Meusel M, Grawe F, Katerkamp A, Cammann K, Börchers T. Optical DNA-sensor chip for real-time detection of hybridization events. Fresenius J Anal Chem. 2001;371(2):120–7.PubMedCrossRefGoogle Scholar
  46. 46.
    Mathew FP, Alocilja EC. Porous silicon-based biosensor for pathogen detection. Biosens Bioelectron. 2005;20(8):1656–61.PubMedCrossRefGoogle Scholar
  47. 47.
    Zeng S, Baillargeat D, Ho H-P, Yong K-T. Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications. Chem Soc Rev. 2014;43(10):3426–52.PubMedCrossRefGoogle Scholar
  48. 48.
    Rich RL, Myszka DG. BIACORE J: a new platform for routine biomolecular interaction analysis†. J Mol Recognit. 2001;14(4):223–8.PubMedCrossRefGoogle Scholar
  49. 49.
    Indyk HE, Persson BS, Caselunghe MC, Moberg A, Filonzi EL, Woollard DC. Determination of vitamin B12 in milk products and selected foods by optical biosensor protein-binding assay: method comparison. J AOAC Int. 2002;85(1):72–81.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Singapore 2016

Authors and Affiliations

  • Wentao Xu
    • 1
    • 2
  1. 1.Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional EngineeringChina Agricultural UniversityBeijingChina
  2. 2.Beijing Laboratory for Food Quality and Safety, College of Food Science & Nutritional EngineeringChina Agricultural UniversityBeijingChina

Personalised recommendations