A Developed Accurate Digital PCR Detection Technology in Food Safety

  • Wentao Xu


With the development of the quantitative PCR detection methodologies, different types of PCR techniques have been developed, such as real-time quantitative PCR, competitive real-time PCR, etc. However, all the above techniques only achieve quantitative detection by standard curves and are considered labor-intensive experiments. Based on this background, digital PCR (dPCR), an absolute quantitative detection method, was developed in the 1990s and could achieve quantitative detection without the generation of standard curves. The idea of digital PCR was first raised by Kinzler and Vogelstein in the 1990s based on the limited separation of the original PCR reaction. Digital PCR has the advantage of being highly sensitive, specific, and well stable and having absolute quantitation compared to the original real-time PCR. Over nearly three decades, digital PCR has achieved wide usage in different areas, such as clinical diagnostics, GMO detections, biosensor detections, etc. In this chapter, the background of the development of digital PCR, the concept of digital PCR, and the use of digital PCR in different areas are reviewed in detail. By reading this chapter, the reader could have a better comprehension of all the aspects of digital PCR.


Digital PCR Absolute quantification Viral detection Diagnostic detection GMO detection 



This work is supported by the National Science and Technology Major Project (2016ZX08012-001). Many thanks to Pengyu Zhu for his kindly help in manuscript conception and preparation.


  1. 1.
    Mackay IM, Arden KE, Nitsche A. Real-time PCR in virology. Nucleic Acids Res. 2002;30:1292–305. doi: 10.1093/nar/30.6.1292.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Bustin S, Benes V, Garson J. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem. 2009;55:611–22. doi: 10.1373/clinchem.2008.112797.CrossRefPubMedGoogle Scholar
  3. 3.
    Cook L, Atienza EE, Bagabag A, et al. Comparison of methods for extraction of viral DNA from cellular specimens. Diagn Microbiol Infect Dis. 2009;64:37–42. doi: 10.1016/j.diagmicrobio.2009.01.003.CrossRefPubMedGoogle Scholar
  4. 4.
    Lai KK-Y, Cook L, Wendt S, et al. Evaluation of real-time PCR versus PCR with liquid-phase hybridization for detection of enterovirus RNA in cerebrospinal fluid. J Clin Microbiol. 2003;41:3133–41. doi: 10.1128/JCM.41.7.3133-3141.2003.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Kodama T, Kurosawa Y, Kitta K, et al. Tendency for interlaboratory precision in the GMO analysis method based on real-time PCR. J AOAC Int. 2010;93:734–49.PubMedGoogle Scholar
  6. 6.
    Fu W, Zhu P, Wang C, et al. A highly sensitive and specific method for the screening detection of genetically modified organisms based on digital PCR without pretreatment. Sci Rep. 2015;5:12715.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Burns MJ, Burrell AM, Foy CA. The applicability of digital PCR for the assessment of detection limits in GMO analysis. Eur Food Res Technol. 2010;231:353–62. doi: 10.1007/s00217-010-1277-8.CrossRefGoogle Scholar
  8. 8.
    Vogelstein B, Kinzler KW. Digital PCR. Proc Natl Acad Sci U S A. 1999;96:9236–41. doi: 10.1073/pnas.96.16.9236.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Ge Q, Liu Z, Bai Y, et al. Emulsion PCR-based method to detect Y chromosome microdeletions. Anal Biochem. 2007;367:173–8.CrossRefPubMedGoogle Scholar
  10. 10.
    Zhu Z, Jenkins G, Zhang W, et al. Single-molecule emulsion PCR in microfluidic droplets. Anal Bioanal Chem. 2012;403:2127–43.CrossRefPubMedGoogle Scholar
  11. 11.
    Williams R, Peisajovich SG, Miller OJ, et al. Amplification of complex gene libraries by emulsion PCR. Nat Methods. 2006;3:545–50.CrossRefPubMedGoogle Scholar
  12. 12.
    Shao K, Ding W, Wang F, et al. Emulsion PCR: a high efficient way of PCR amplification of random DNA libraries in aptamer selection. PLoS ONE. 2011;6, e24910.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Corbisier P, Bhat S, Partis L, et al. Absolute quantification of genetically modified MON810 maize (Zea mays L.) by digital polymerase chain reaction. Anal Bioanal Chem. 2010;396:2143–50.CrossRefPubMedGoogle Scholar
  14. 14.
    Demeke T, Gräfenhan T, Holigroski M, et al. Assessment of droplet digital PCR for absolute quantification of genetically engineered OXY235 canola and DP305423 soybean samples. Food Control. 2014;46:470–4.CrossRefGoogle Scholar
  15. 15.
    Morisset D, Štebih D, Milavec M, et al. Quantitative analysis of food and feed samples with droplet digital PCR. PLoS ONE. 2013;8, e62583.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Hori M, Fukano H, Suzuki Y. Uniform amplification of multiple DNAs by emulsion PCR. Biochem Biophys Res Commun. 2007;352:323–8.CrossRefPubMedGoogle Scholar
  17. 17.
    Nakano M. Single-molecule PCR using water-in-oil emulsion. J Biotechnol. 2003;102:117–24.CrossRefPubMedGoogle Scholar
  18. 18.
    Dear PH, Cook PR. Happy mapping: linkage mapping using a physical analogue of meiosis. Nucleic Acids Res. 1993;21:13–20. doi: 10.1093/nar/21.1.13.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Sykes PJ, Neoh SH, Brisco MJ, et al. Quantitation of targets for PCR by use of limiting dilution. Biotechniques. 1992;13:444–9.PubMedGoogle Scholar
  20. 20.
    Pohl G, Shih I-M. Principle and applications of digital PCR. Expert Rev Mol Diagn. 2004;4:41–7. doi: 10.1586/14737159.4.1.41.CrossRefPubMedGoogle Scholar
  21. 21.
    McCaughan F, Dear PH. Single-molecule genomics. J Pathol. 2010;220:297–306. doi: 10.1002/path.2647.PubMedGoogle Scholar
  22. 22.
    Bhat S, Herrmann J, Armishaw P, et al. Single molecule detection in nanofluidic digital array enables accurate measurement of DNA copy number. Anal Bioanal Chem. 2009;394:457–67. doi: 10.1007/s00216-009-2729-5.CrossRefPubMedGoogle Scholar
  23. 23.
    Daser A, Thangavelu M, Pannell R, et al. Interrogation of genomes by molecular copy-number counting (MCC). Nat Methods. 2006;3:447–53. doi: 10.1038/nmeth880.CrossRefPubMedGoogle Scholar
  24. 24.
    Zhang B, Li M, McDonald T, et al. Microenvironmental protection of CML stem and progenitor cells from tyrosine kinase inhibitors through N-cadherin and Wnt-β-catenin signaling. Blood. 2013;121:1824–38. doi: 10.1182/blood-2012-02-412890.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Hindson BJ, Ness KD, Masquelier DA, et al. High-throughput droplet digital PCR system for absolute quantitation of DNA copy number. Anal Chem. 2011;83:8604–10. doi: 10.1021/ac202028g.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Sanders R, Huggett JF, Bushell CA, et al. Evaluation of digital PCR for absolute DNA quantification. Anal Chem. 2011;83:6474–84. doi: 10.1021/ac103230c.CrossRefPubMedGoogle Scholar
  27. 27.
    Pinheiro LB, Coleman VA, Hindson CM, et al. Evaluation of a droplet digital polymerase chain reaction format for DNA copy number quantification. Anal Chem. 2012;84:1003–11. doi: 10.1021/ac202578x.CrossRefPubMedGoogle Scholar
  28. 28.
    Bhat S, Herrmann J, Armishaw P, et al. Single molecule detection in nanofluidic digital array enables accurate measurement of DNA copy number. Anal Bioanal Chem. 2009;394:457–67.CrossRefPubMedGoogle Scholar
  29. 29.
    Spurgeon SL, Jones RC, Ramakrishnan R. High throughput gene expression measurement with real time PCR in a microfluidic dynamic array. PLoS ONE. 2008;3, e1662. doi: 10.1371/journal.pone.0001662.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Morrison T, Hurley J, Garcia J, et al. Nanoliter high throughput quantitative PCR. Nucleic Acids Res. 2006;34, e123. doi: 10.1093/nar/gkl639.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Pekin D, Skhiri Y, Baret J-C, et al. Quantitative and sensitive detection of rare mutations using droplet-based microfluidics. Lab Chip. 2011;11:2156–66. doi: 10.1039/c1lc20128j.CrossRefPubMedGoogle Scholar
  32. 32.
    Diehl F, Li M, He Y, et al. BEAMing: single-molecule PCR on microparticles in water-in-oil emulsions. Nat Methods. 2006;3:551–9. doi: 10.1038/nmeth898.CrossRefPubMedGoogle Scholar
  33. 33.
    Dressman D, Yan H, Traverso G, et al. Transforming single DNA molecules into fluorescent magnetic particles for detection and enumeration of genetic variations. Proc Natl Acad Sci U S A. 2003;100:8817–22. doi: 10.1073/pnas.1133470100.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Hayden RT, Yan X, Wick MT, et al. Factors contributing to variability of quantitative viral PCR results in proficiency testing samples: a multivariate analysis. J Clin Microbiol. 2012;50:337–45. doi: 10.1128/JCM.01287-11.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Hayden RT, Hokanson KM, Pounds SB, et al. Multicenter comparison of different real-time PCR assays for quantitative detection of Epstein-Barr virus. J Clin Microbiol. 2008;46:157–63. doi: 10.1128/JCM.01252-07.CrossRefPubMedGoogle Scholar
  36. 36.
    Hindson CM, Chevillet JR, Briggs HA, et al. Absolute quantification by droplet digital PCR versus analog real-time PCR. Nat Methods. 2013;10:1003–5. doi: 10.1038/nmeth.2633.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Flamand L, Komaroff AL, Arbuckle JH, et al. Review, part 1: human herpesvirus-6-basic biology, diagnostic testing, and antiviral efficacy. J Med Virol. 2010;82:1560–8. doi: 10.1002/jmv.21839.CrossRefPubMedGoogle Scholar
  38. 38.
    Arbuckle JH, Medveczky MM, Luka J, et al. The latent human herpesvirus-6A genome specifically integrates in telomeres of human chromosomes in vivo and in vitro. Proc Natl Acad Sci U S A. 2010;107:5563–8. doi: 10.1073/pnas.0913586107.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Hirsch HH, Lautenschlager I, Pinsky BA, et al. An international multicenter performance analysis of cytomegalovirus load tests. Clin Infect Dis. 2012;56:367–73. doi: 10.1093/cid/cis900.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Hayden RT, Gu Z, Ingersoll J, et al. Comparison of droplet digital PCR to real-time PCR for quantitative detection of cytomegalovirus. J Clin Microbiol. 2013;51:540–6.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Strain MC, Lada SM, Luong T, et al. Highly precise measurement of HIV DNA by droplet digital PCR. PLoS ONE. 2013;8:2–9. doi: 10.1371/journal.pone.0055943.Google Scholar
  42. 42.
    Hoshino T, Inagaki F. Molecular quantification of environmental DNA using microfluidics and digital PCR. Syst Appl Microbiol. 2012;35:390–5. doi: 10.1016/j.syapm.2012.06.006.CrossRefPubMedGoogle Scholar
  43. 43.
    Dingle TC, Sedlak RH, Linda C, Jerome KR. Tolerance of droplet-digital PCR vs real-time quantitative PCR to inhibitory substances. Clin Chem. 2013;59:1668–9.CrossRefGoogle Scholar
  44. 44.
    Heyries KA, Tropini C, Vaninsberghe M, et al. Megapixel digital PCR. Nat Methods. 2011;8:649–51. doi: 10.1038/nmeth.1640.CrossRefPubMedGoogle Scholar
  45. 45.
    Conrad DF, Pinto D, Redon R, et al. Origins and functional impact of copy number variation in the human genome. Nature. 2010;464:704–12. doi: 10.1038/nature08516.CrossRefPubMedGoogle Scholar
  46. 46.
    Berger MF, Lawrence MS, Demichelis F, et al. The genomic complexity of primary human prostate cancer. Nature. 2011;470:214–20. doi: 10.1038/nature09744.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Whale AS, Huggett JF, Cowen S, et al. Comparison of microfluidic digital PCR and conventional quantitative PCR for measuring copy number variation. Nucleic Acids Res. 2012;40, e82. doi: 10.1093/nar/gks203.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Petriv OI, Heyries KA, VanInsberghe M, et al. Methods for multiplex template sampling in digital PCR assays. PLoS ONE. 2014;9:1–8. doi: 10.1371/journal.pone.0098341.CrossRefGoogle Scholar
  49. 49.
    Page K, Hava N, Ward B, et al. Detection of HER2 amplification in circulating free DNA in patients with breast cancer. Br J Cancer. 2011;104:1342–8. doi: 10.1038/bjc.2011.89.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Gevensleben H, Garcia-Murillas I, Graeser MK, et al. Noninvasive detection of HER2 amplification with plasma DNA digital PCR. Clin Cancer Res. 2013;19:3276–84.CrossRefPubMedGoogle Scholar
  51. 51.
    Miotke L, Lau BT, Rumma RT, Ji HP. High sensitivity detection and quantitation of DNA copy number and single nucleotide variants with single color droplet digital PCR. Anal Chem. 2014;86:2618–24. doi: 10.1021/ac403843j.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Mitchell PS, Parkin RK, Kroh EM, et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci U S A. 2008;105:10513–8. doi: 10.1073/pnas.0804549105.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Mouillet J-F, Chu T, Hubel CA, et al. The levels of hypoxia-regulated microRNAs in plasma of pregnant women with fetal growth restriction. Placenta. 2010;31:781–4. doi: 10.1016/j.placenta.2010.07.001.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Wu L, Zhou H, Lin H, et al. Circulating microRNAs are elevated in plasma from severe preeclamptic pregnancies. Reproduction. 2012;143:389–97. doi: 10.1530/REP-11-0304.CrossRefPubMedGoogle Scholar
  55. 55.
    Chim SSC, Shing TKF, Hung ECW, et al. Detection and characterization of placental MicroRNAs in maternal plasma. Clin Chem. 2008;54:482–90. doi: 10.1373/clinchem.2007.097972.CrossRefPubMedGoogle Scholar
  56. 56.
    Ma J, Li N, Guarnera M, Jiang F. Quantification of plasma miRNAs by digital PCR for cancer diagnosis. Biomark Insights. 2013;8:127–36. doi: 10.4137/BMImi.Ss13154.PubMedPubMedCentralGoogle Scholar
  57. 57.
    Takahashi K, Yan IK, Kim C, et al. Analysis of extracellular RNA by digital PCR. Front Oncol. 2014;4:2–7.CrossRefGoogle Scholar
  58. 58.
    Huggett JF, Foy CA, Benes V, et al. The digital MIQE guidelines: minimum information for publication of quantitative digital PCR experiments. Clin Chem. 2013;59:892–902. doi: 10.1373/clinchem.2013.206375.CrossRefPubMedGoogle Scholar
  59. 59.
    Li M, Chen W-D, Papadopoulos N, et al. Sensitive digital quantification of DNA methylation in clinical samples. Nat Biotechnol. 2009;27:858–63. doi: 10.1038/nbt.1559.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Weisenberger DJ, Trinh BN, Campan M, et al. DNA methylation analysis by digital bisulfite genomic sequencing and digital MethyLight. Nucleic Acids Res. 2008;36:4689–98. doi: 10.1093/nar/gkn455.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    White RA, Quake SR, Curr K. Digital PCR provides absolute quantitation of viral load for an occult RNA virus. J Virol Methods. 2012;179:45–50. doi: 10.1016/j.jviromet.2011.09.017.CrossRefPubMedGoogle Scholar
  62. 62.
    Bhattarai N, Stapleton JT. GB virus C: the good boy virus? Trends Microbiol. 2012;20:124–30. doi: 10.1016/j.tim.2012.01.004.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Henrich TJ, Gallien S, Li JZ, et al. Low-level detection and quantitation of cellular HIV-1 DNA and 2-LTR circles using droplet digital PCR. J Virol Methods. 2012;186:68–72. doi: 10.1016/j.jviromet.2012.08.019.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Kiss MM, Ortoleva-Donnelly L, Beer NR, et al. High-throughput quantitative polymerase chain reaction in picoliter droplets. Anal Chem. 2008;80:8975–81.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Shen F, Davydova EK, Du W, et al. Digital isothermal quantification of nucleic acids via simultaneous chemical initiation of recombinase polymerase amplification reactions on SlipChip. Anal Chem. 2011;83:3533–40. doi: 10.1021/ac200247e.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Yung TKF, Chan KCA, Mok TSK, et al. Single-molecule detection of epidermal growth factor receptor mutations in plasma by microfluidics digital PCR in non-small cell lung cancer patients. Clin Cancer Res. 2009;15:2076–84. doi: 10.1158/1078-0432.CCR-08-2622.CrossRefPubMedGoogle Scholar
  67. 67.
    Wang J, Ramakrishnan R, Tang Z, et al. Quantifying EGFR alterations in the lung cancer genome with nanofluidic digital PCR arrays. Clin Chem. 2010;56:623–32. doi: 10.1373/clinchem.2009.134973.CrossRefPubMedGoogle Scholar
  68. 68.
    Wang L, McLeod HL, Weinshilboum RM. Genomics and drug response. N Engl J Med. 2011;364:1144–53. doi: 10.1056/NEJMra1010600.Genomics.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Ouahchi K, Lindeman N, Lee C. Copy number variants and pharmacogenomics. Pharmacogenomics. 2006;7:25–9. doi: 10.2217/14622416.7.1.25.CrossRefPubMedGoogle Scholar
  70. 70.
    Reiter M, Kirchner B, Müller H, et al. Quantification noise in single cell experiments. Nucleic Acids Res. 2011;39:1–12. doi: 10.1093/nar/gkr505.CrossRefGoogle Scholar
  71. 71.
    Rottiers V, Näär AM. MicroRNAs in metabolism and metabolic disorders. Nat Rev Mol Cell Biol. 2012;13:239–50. doi: 10.1038/nrm3313.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Nair VS, Maeda LS, Ioannidis JPA. Clinical outcome prediction by MicroRNAs in human cancer: a systematic review. J Natl Cancer Inst. 2012;104:528–40. doi: 10.1093/jnci/djs027.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Petriv OI, Kuchenbauer F, Delaney AD, et al. Comprehensive microRNA expression profiling of the hematopoietic hierarchy. Proc Natl Acad Sci U S A. 2010;107:15443–8. doi: 10.1073/pnas.1009320107.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Baylin SB, Jones PA. A decade of exploring the cancer epigenome – biological and translational implications. Nat Rev Cancer. 2011;11:726–34. doi: 10.1038/nrc3130.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Mikeska T, Candiloro IL, Dobrovic A. The implications of heterogeneous DNA methylation for the accurate quantification of methylation. Epigenomics. 2010;2:561–73. doi: 10.2217/epi.10.32.CrossRefPubMedGoogle Scholar
  76. 76.
    Cipriany BR, Zhao R, Murphy PJ, et al. Single molecule epigenetic analysis in a nanofluidic channel. Anal Chem. 2010;82:2480–7.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Weaver S, Dube S, Mir A, et al. Taking qPCR to a higher level: analysis of CNV reveals the power of high throughput qPCR to enhance quantitative resolution. Methods. 2010;50:271–6. doi: 10.1016/j.ymeth.2010.01.003.CrossRefPubMedGoogle Scholar
  78. 78.
    Corbisier P, Bhat S, Partis L, et al. Absolute quantification of genetically modified MON810 maize (Zea mays L.) by digital polymerase chain reaction. Anal Bioanal Chem. 2010;396:2143–50. doi: 10.1007/s00216-009-3200-3.CrossRefPubMedGoogle Scholar
  79. 79.
    Morisset D, Štebih D, Milavec M, et al. Quantitative analysis of food and feed samples with droplet digital PCR. PLoS ONE. 2013;8, e62583. doi: 10.1371/journal.pone.0062583.CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Baker M. Digital PCR hits its stride. Nat Methods. 2012;9:541–4. doi: 10.1038/nmeth.2027.CrossRefGoogle Scholar
  81. 81.
    McDermott GP, Do D, Litterst CM, et al. Multiplexed target detection using DNA-binding dye chemistry in droplet digital PCR. Anal Chem. 2013;85:11619–27. doi: 10.1021/ac403061n.CrossRefPubMedGoogle Scholar
  82. 82.
    Waiblinger H-U, Ernst B, Anderson A, Pietsch K. Validation and collaborative study of a P35S and T-nos duplex real-time PCR screening method to detect genetically modified organisms in food products. Eur Food Res Technol. 2008;226:1221–8. doi: 10.1007/s00217-007-0748-z.CrossRefGoogle Scholar
  83. 83.
    Kluga L, Folloni S, van den Bulcke M, et al. Applicability of the “Real-Time PCR-Based Ready-to-Use Multi-Target Analytical System for GMO Detection” in processed maize matrices. Eur Food Res Technol. 2012;234:109–18. doi: 10.1007/s00217-011-1615-5.CrossRefGoogle Scholar
  84. 84.
    Shao N, Jiang SM, Zhang M, et al. MACRO: a combined microchip-PCR and microarray system for high-throughput monitoring of genetically modified organisms. Anal Chem. 2014;86:1269–76. doi: 10.1021/ac403630a.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Singapore 2016

Authors and Affiliations

  • Wentao Xu
    • 1
    • 2
  1. 1.Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional EngineeringChina Agricultural UniversityBeijingChina
  2. 2.Beijing Laboratory for Food Quality and Safety, College of Food Science & Nutritional EngineeringChina Agricultural UniversityBeijingChina

Personalised recommendations