Advertisement

PCR-Based Technologies for Identifying Unknown Gene Sequences

  • Wentao Xu
Chapter

Abstract

Genome walking is a basic molecular biology technique for obtaining unknown sequences. In biology, unknown sequences are usually related to gene regulation, diseases, undiscovered functions of genes, and food safety. The first genome walking method described, inverse PCR, has been established for 28 years. Despite the shortcomings of I-PCR, it has permitted the identification of several previously unknown sequences. To overcome the drawbacks of I-PCR and enhance its efficiency, and in conjunction with recent advances in molecular biology, many genome walking methods have been developed. Essentially, these methods may be classified into the two following categories: those with or those without genome digestion involving restriction enzymes in the first step. According to the features of specific genome walking techniques, these methods are suitable for different types of templates, such as long or short genome walking, single or multiple insertion identification, or simple or complex DNA structures. As the world begins to place greater importance on food security, the future of genome walking is promising, especially in identifying the unintended consequences of GM foods.

Keywords

Genome walking Unknown sequences Flanking sequences PCR DNA sequencing 

Notes

Acknowledgments

This work is supported by the National Science and Technology Major Project (2016ZX08012-001). Many thanks to Ying Shang, for her kindly help in manuscript conception and preparation.

References

  1. 1.
    Yuanxin Y, Chengcai A, Li L, Jiayu G, Guihong T, Zhangliang C. T‐linker‐specific ligation PCR (T‐linker PCR): an advanced PCR technique for chromosome walking or for isolation of tagged DNA ends. Nucleic Acids Res. 2003;31(12):e68–68.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Wahl GM, Lewis KA, RuIz JC, Rothenberg B, Zhao J, Evans GA. Cosmid vectors for rapid genomic walking, restriction mapping, and gene transfer. Proc Natl Acad Sci. 1987;84(8):2160–4.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Berriman M, Ghedin E, Hertz-Fowler C, Blandin G, Renauld H, Bartholomeu DC, Lennard NJ, Caler E, Hamlin NE, Haas B. The genome of the African trypanosome Trypanosoma brucei. Science. 2005;309(5733):416–22.CrossRefPubMedGoogle Scholar
  4. 4.
    Acevedo JP, Reyes F, Parra LP, Salazar O, Andrews BA, Asenjo JA. Cloning of complete genes for novel hydrolytic enzymes from Antarctic sea water bacteria by use of an improved genome walking technique. J Biotechnol. 2008;133(3):277–86.CrossRefPubMedGoogle Scholar
  5. 5.
    Terauchi R, Kahl G. Rapid isolation of promoter sequences by TAIL-PCR: the 5′-flanking regions of Pal and Pgi genes from yams (Dioscorea). Mol Gen Genet MGG. 2000;263(3):554–60.CrossRefPubMedGoogle Scholar
  6. 6.
    Ochman H, Gerber AS, Hartl DL. Genetic applications of an inverse polymerase chain reaction. Genetics. 1988;120(3):621–3.PubMedPubMedCentralGoogle Scholar
  7. 7.
    Shang Y, Zhang N, Zhu P, Luo Y, Huang K, Tian W, Xu W. Restriction enzyme cutting site distribution regularity for DNA looping technology. Gene. 2014;534(2):222–8.CrossRefPubMedGoogle Scholar
  8. 8.
    Zhang N, Xu W, Bai W, Zhai Z, Luo Y, Yan X, He J, Huang K. Event-specific qualitative and quantitative PCR detection of LY038 maize in mixed samples. Food Control. 2011;22(8):1287–95.CrossRefGoogle Scholar
  9. 9.
    Yang R, Xu W, Luo Y, Guo F, Lu Y, Huang K. Event-specific qualitative and quantitative PCR detection of roundup ready event GT73 based on the 3′-integration junction. Plant Cell Rep. 2007;26(10):1821–31.CrossRefPubMedGoogle Scholar
  10. 10.
    Digeon J-f, Guiderdoni E, Alary R, Michaux-Ferriere N, Joudrier P, Gautier M-f. Cloning of a wheat puroindoline gene promoter by IPCR and analysis of promoter regions required for tissue-specific expression in transgenic rice seeds. Plant Mol Biol. 1999;39(6):1101–12.CrossRefPubMedGoogle Scholar
  11. 11.
    Benkel BF, Fong Y. Long range-inverse PCR (LR-IPCR): extending the useful range of inverse PCR. Genet Anal: Biomol Eng. 1996;13(5):123–7.CrossRefGoogle Scholar
  12. 12.
    Ponce MR, Quesada V, Micol JL. Rapid discrimination of sequences flanking and within T‐DNA insertions in the Arabidopsis genome. Plant J. 1998;14(4):497–501.CrossRefPubMedGoogle Scholar
  13. 13.
    Kohda T, Taira K. A simple and efficient method to determine the terminal sequences of restriction fragments containing known sequences. DNA Res. 2000;7(2):151–5.CrossRefPubMedGoogle Scholar
  14. 14.
    Liu Y-G, Whittier RF. Thermal asymmetric interlaced PCR: automatable amplification and sequencing of insert end fragments from P1 and YAC clones for chromosome walking. Genomics. 1995;25(3):674–81.CrossRefPubMedGoogle Scholar
  15. 15.
    Yang L, Xu S, Pan A, Yin C, Zhang K, Wang Z, Zhou Z, Zhang D. Event specific qualitative and quantitative polymerase chain reaction detection of genetically modified MON863 maize based on the 5′-transgene integration sequence. J Agric Food Chem. 2005;53(24):9312–8.CrossRefPubMedGoogle Scholar
  16. 16.
    Chaves RL, Graff J, Normann A, Flehmig B. Specific detection of minus strand hepatitis A virus RNA by Tail-PCR following reverse transcription. Nucleic Acids Res. 1994;22(10):1919.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Chen J-Y, Shen X-l, Xin Y-R, Chen X-J. Application of the modified TAIL-PCR technique in cloning of PM H~+-ATPase gene promoter from wheat genomic DNA [J]. J Henan Agric Univ. 2008;1:000.Google Scholar
  18. 18.
    Isegawa Y, Sheng J, Sokawa Y, Yamanishi K, Nakagomi O, Ueda S. Selective amplification of cDNA sequence from total RNA by cassette-ligation mediated polymerase chain reaction (PCR): application to sequencing 6 5 kb genome segment of hantavirus strain B-1. Mol Cell Probes. 1992;6(6):467–75.CrossRefPubMedGoogle Scholar
  19. 19.
    Nthangeni MB, Ramagoma F, Tlou MG, Litthauer D. Development of a versatile cassette for directional genome walking using cassette ligation-mediated PCR and its application in the cloning of complete lipolytic genes from Bacillus species. J Microbiol Methods. 2005;61(2):225–34.CrossRefPubMedGoogle Scholar
  20. 20.
    Tamori A, Yamanishi Y, Kawashima S, Kanehisa M, Enomoto M, Tanaka H, Kubo S, Shiomi S, Nishiguchi S. Alteration of gene expression in human hepatocellular carcinoma with integrated hepatitis B virus DNA. Clin Cancer Res. 2005;11(16):5821–6.CrossRefPubMedGoogle Scholar
  21. 21.
    Pfeifer GP, Steigerwald SD, Mueller PR, Wold B, Riggs AD. Genomic sequencing and methylation analysis by ligation mediated PCR. Science. 1989;246(4931):810–3.CrossRefPubMedGoogle Scholar
  22. 22.
    Tonooka Y, Fujishima M. Comparison and critical evaluation of PCR-mediated methods to walk along the sequence of genomic DNA. Appl Microbiol Biotechnol. 2009;85(1):37–43.CrossRefPubMedGoogle Scholar
  23. 23.
    Trinh Q, Xu W, Shi H, Luo Y, Huang K. An AT linker adapter polymerase chain reaction method for chromosome walking without restriction site cloning bias. Anal Biochem. 2012;425(1):62–7.CrossRefPubMedGoogle Scholar
  24. 24.
    Trinh Q, Shi H, Xu W, Hao J, Luo Y, Huang K. Loop‐linker PCR: an advanced PCR technique for genome walking. IUBMB Life. 2012;64(10):841–5.CrossRefPubMedGoogle Scholar
  25. 25.
    Arnold C, Hodgson I. Vectorette PCR: a novel approach to genomic walking. Genome Res. 1991;1(1):39–42.CrossRefGoogle Scholar
  26. 26.
    Hengen PN. Vectorette, splinkerette and boomerang DNA amplification. Trends Biochem Sci. 1995;20(9):372–3.CrossRefPubMedGoogle Scholar
  27. 27.
    Riley J, Butler R, Ogilvie D, Finniear R, Jenner D, Powell S, Anand R, Smith J, Markham A. A novel, rapid method for the isolation of terminal sequences from yeast artificial chromosome (YAC) clones. Nucleic Acids Res. 1990;18(10):2887–90.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Wang S, He J, Cui Z, Li S. Self-formed adaptor PCR: a simple and efficient method for chromosome walking. Appl Environ Microbiol. 2007;73(15):5048–51.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Xu W, Shang Y, Zhu P, Zhai Z, He J, Huang K, Luo Y. Randomly broken fragment PCR with 5′ end-directed adaptor for genome walking. Scientific reports 3; 2013.Google Scholar
  30. 30.
    Gadkar VJ, Filion M. A novel method to perform genomic walks using a combination of single strand DNA circularization and rolling circle amplification. J Microbiol Methods. 2011;87(1):38–43.CrossRefPubMedGoogle Scholar
  31. 31.
    Kovalic D, Garnaat C, Guo L, Yan Y, Groat J, Silvanovich A, Ralston L, Huang M, Tian Q, Christian A. The use of next generation sequencing and junction sequence analysis bioinformatics to achieve molecular characterization of crops improved through modern biotechnology. Plant Genome. 2012;5(3):149–63.Google Scholar
  32. 32.
    Yang L, Wang C, Holst-Jensen A, Morisset D, Lin Y, Zhang D. Characterization of GM events by insert knowledge adapted re-sequencing approaches. Scientific reports 3; 2013.Google Scholar
  33. 33.
    Williams‐Carrier R, Stiffler N, Belcher S, Kroeger T, Stern DB, Monde RA, Coalter R, Barkan A. Use of Illumina sequencing to identify transposon insertions underlying mutant phenotypes in high‐copy Mutator lines of maize. Plant J. 2010;63(1):167–77.PubMedGoogle Scholar
  34. 34.
    Studer A, Zhao Q, Ross-Ibarra J, Doebley J. Identification of a functional transposon insertion in the maize domestication gene tb1. Nat Genet. 2011;43(11):1160–3.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Hajirasouliha I, Hormozdiari F, Alkan C, Kidd JM, Birol I, Eichler EE, Sahinalp SC. Detection and characterization of novel sequence insertions using paired-end next-generation sequencing. Bioinformatics. 2010;26(10):1277–83.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Polko JK, Temanni M-R, van Zanten M, van Workum W, Iburg S, Pierik R, Voesenek LA, Peeters AJ. Illumina sequencing technology as a method of identifying T-DNA insertion loci in activation-tagged Arabidopsis thaliana plants. Mol Plant. 2012;5(4):948–50.CrossRefPubMedGoogle Scholar
  37. 37.
    Leoni C, Volpicella M, De Leo F, Gallerani R, Ceci LR. Genome walking in eukaryotes. FEBS J. 2011;278(21):3953–77.CrossRefPubMedGoogle Scholar
  38. 38.
    Thirulogachandar V, Pandey P, Vaishnavi C, Reddy MK. An affinity-based genome walking method to find transgene integration loci in transgenic genome. Anal Biochem. 2011;416(2):196–201.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Singapore 2016

Authors and Affiliations

  • Wentao Xu
    • 1
    • 2
  1. 1.Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional EngineeringChina Agricultural UniversityBeijingChina
  2. 2.Beijing Laboratory for Food Quality and Safety, College of Food Science & Nutritional EngineeringChina Agricultural UniversityBeijingChina

Personalised recommendations