Advertisement

Basic Rules in Nucleic Acid-Mediated Amplification and Hybridization Methods in Food Safety Detection: A Review

  • Wentao Xu
Chapter

Abstract

Detection methods used in food safety can be classified into two categories: amplification and hybridization. Their purpose is to accumulate or to recognize target sequence specifically using a proper reaction buffer in vitro. Polymerase chain reaction (PCR) is a valuable tool for monitoring gene expression, for quantifying foodborne pathogens, and for use in clinical diagnostics. Hybridization methods offer a new frontier in the identification of targets in a simple and high-throughput way. This review mainly describes and compares the basic rules of PCR and hybridization, including their formatting source, characteristics, and applications.

Keywords

Principle Base pairing Recognition PCR HCR 

Notes

Acknowledgments

This work is supported by the Ministry of Science and Technology of Beijing (XX2014B069). Many thanks to Chenguang Wang, for his kind help in manuscript conception and preparation.

References

  1. 1.
    Waddington CH. Molecular biology or ultrastructural biology? Nature. 1961;190:184.PubMedCrossRefGoogle Scholar
  2. 2.
    Erlich HA. PCR technology. Principles and applications for DNA amplification. New York: Stockton Press; 1989.Google Scholar
  3. 3.
    Watson J. The double helix. Paris: Hachette; 2012.Google Scholar
  4. 4.
    Watson JD, Crick FHC. Molecular structure of nucleic acids. Nature. 1953;171(4356):737–8.PubMedCrossRefGoogle Scholar
  5. 5.
    Bell SD, Méchali M, DePamphilis ML. DNA replication. Cold Spring Harbor: Cold Spring Harbor Laboratory Press; 2013.Google Scholar
  6. 6.
    Cox LS. Molecular themes in DNA replication. London: Royal Society of Chemistry; 2009.CrossRefGoogle Scholar
  7. 7.
    Yakovchuk P, Protozanova E, Frank-Kamenetskii MD. Base-stacking and base-pairing contributions into thermal stability of the DNA double helix. Nucleic Acids Res. 2006;34(2):564–74.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Olby RC. The path to the double helix: the discovery of DNA. New York: Courier Corporation; 1974.Google Scholar
  9. 9.
    Hogan M, LeGrange J, Austin B. Dependence of DNA helix flexibility on base composition. Nature. 1982;304(5928):752–4.CrossRefGoogle Scholar
  10. 10.
    Keller GH, Manak MM. DNA probes: background, applications, procedures. Basingstoke: Macmillan Press Ltd; 1993.Google Scholar
  11. 11.
    Hardiman G. Microarray innovations: technology and experimentation. Boca Raton: CRC Press; 2009.CrossRefGoogle Scholar
  12. 12.
    Crick FHC, Watson JD. The complementary structure of deoxyribonucleic acid. In: Proceedings of the Royal Society of London A: mathematical, physical and engineering sciences. The Royal Society; 1954. p. 80–96.Google Scholar
  13. 13.
    Breslauer KJ, Frank R, Blöcker H, Marky LA. Predicting DNA duplex stability from the base sequence. Proc Natl Acad Sci. 1986;83(11):3746–50.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Bansal M. DNA structure: revisiting the Watson-Crick double helix. Curr Sci. 2003;85(11):1556–63.Google Scholar
  15. 15.
    Williams MC, Wenner JR, Rouzina I, Bloomfield VA. Effect of pH on the overstretching transition of double-stranded DNA: evidence of force-induced DNA melting. Biophys J. 2001;80(2):874–81.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Kleppe K, Ohtsuka E, Kleppe R, Molineux I, Khorana HG. Studies on polynucleotides: XCVI. Repair replication of short synthetic DNA’s as catalyzed by DNA polymerases. J Mol Biol. 1971;56(2):341–61.PubMedCrossRefGoogle Scholar
  17. 17.
    Panjkovich A, Melo F. Comparison of different melting temperature calculation methods for short DNA sequences. Bioinformatics. 2005;21(6):711–22.PubMedCrossRefGoogle Scholar
  18. 18.
    SantaLucia Jr J, Hicks D. The thermodynamics of DNA structural motifs. Annu Rev Biophys Biomol Struct. 2004;33:415–40.PubMedCrossRefGoogle Scholar
  19. 19.
    Sinden RR. DNA structure and function. 1st ed. St. Louis: Elsevier; 2012.Google Scholar
  20. 20.
    Bloom LB. DNA replication, repair, and recombination. In: Introduction to bioinformatics. New York: Springer; 2003. p. 75–91.Google Scholar
  21. 21.
    McCulloch SD, Kunkel TA. The fidelity of DNA synthesis by eukaryotic replicative and translesion synthesis polymerases. Cell Res. 2008;18(1):148–61.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Frick DN, Richardson CC. DNA primases. Annu Rev Biochem. 2001;70(1):39–80.PubMedCrossRefGoogle Scholar
  23. 23.
    Gellman SH. Introduction: molecular recognition. Chem Rev. 1997;97(5):1231–2.PubMedCrossRefGoogle Scholar
  24. 24.
    Bielawski C, Chen Y-S. A modular approach to constructing multi-site receptors for isophthalic acid. Chem Commun. 1998;12:1313–4.CrossRefGoogle Scholar
  25. 25.
    Lockett MR, Lange H, Breiten B, Heroux A, Sherman W, Rappoport D, Yau PO, Snyder PW, Whitesides GM. The binding of benzoarylsulfonamide ligands to human carbonic anhydrase is insensitive to formal fluorination of the ligand. Angew Chem. 2013;125(30):7868–71.CrossRefGoogle Scholar
  26. 26.
    Breiten B, Lockett MR, Sherman W, Fujita S, Al-Sayah M, Lange H, Bowers CM, Heroux A, Krilov G, Whitesides GM. Water networks contribute to enthalpy/entropy compensation in protein–ligand binding. J Am Chem Soc. 2013;135(41):15579–84.PubMedCrossRefGoogle Scholar
  27. 27.
    Jeffrey GA, Saenger W. Hydrogen bonding in biological structures. Berlin: Springer; 2012.Google Scholar
  28. 28.
    Shinkai S, Ikeda M, Sugasaki A, Takeuchi M. Positive allosteric systems designed on dynamic supramolecular scaffolds: toward switching and amplification of guest affinity and selectivity. Acc Chem Res. 2001;34(6):494–503.PubMedCrossRefGoogle Scholar
  29. 29.
    Cocolin L, Rajkovic A, Rantsiou K, Uyttendaele M. The challenge of merging food safety diagnostic needs with quantitative PCR platforms. Trends Food Sci Technol. 2011;22:S30–8.CrossRefGoogle Scholar
  30. 30.
    Mullis KB, Erlich HA, Gelfand DH, Horn G, Saiki RK. Reacting nucleic acid with oligonucleotide primer in presence of catalytic enzyme DNA polymerase; polymerase chain reaction patent. Google Patents. 1990.Google Scholar
  31. 31.
    Saiki RK, Scharf S, Faloona F, Mullis KB, Horn GT, Erlich HA, Arnheim N. Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science. 1985;230(4732):1350–4.PubMedCrossRefGoogle Scholar
  32. 32.
    Saiki RK, Gelfand DH, Stoffel S, Scharf SJ, Higuchi R, Horn GT, Mullis KB, Erlich HA. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science. 1988;239(4839):487–91.PubMedCrossRefGoogle Scholar
  33. 33.
    Mullis KB, Faloona FA. Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction. Methods Enzymol. 1987;155:335.PubMedCrossRefGoogle Scholar
  34. 34.
    Mullis K. Nobel lecture: the polymerase chain reaction. The Royal Swedish Academy of Sciences Nobel Prize: Chemistry The Royal Swedish Academy of Sciences, Sweden; 1993. p. 8.Google Scholar
  35. 35.
    Weissensteiner T, Nolan T, Bustin SA, Griffin HG, Griffin A. PCR technology: current innovations. Boca Raton: CRC Press; 2003.Google Scholar
  36. 36.
    Green MR, Sambrook J. Molecular cloning: a laboratory manual, vol. 1. New York: Cold Spring Harbor Laboratory Press; 2012.Google Scholar
  37. 37.
    Sharkey DJ, Scalice ER, Christy KG, Atwood SM, Daiss JL. Antibodies as thermolabile switches: high temperature triggering for the polymerase chain reaction. Nat Biotechnol. 1994;12(5):506–9.CrossRefGoogle Scholar
  38. 38.
    Rychlik W, Spencer WJ, Rhoads RE. Optimization of the annealing temperature for DNA amplification in vitro. Nucleic Acids Res. 1990;18(21):6409–12.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Mitsuhashi M. Technical report: part 1. Basic requirements for designing optimal oligonucleotide probe sequences. J Clin Lab Anal. 1996;10(5):277–84.PubMedCrossRefGoogle Scholar
  40. 40.
    Lawyer FC, Stoffel S, Saiki RK, Chang S-Y, Landre PA, Abramson RD, Gelfand DH. High-level expression, purification, and enzymatic characterization of full-length Thermus aquaticus DNA polymerase and a truncated form deficient in 5′ to 3′ exonuclease activity. Genome Res. 1993;2(4):275–87.CrossRefGoogle Scholar
  41. 41.
    Chien A, Edgar DB, Trela JM. Deoxyribonucleic acid polymerase from the extreme thermophile Thermus aquaticus. J Bacteriol. 1976;127(3):1550–7.PubMedPubMedCentralGoogle Scholar
  42. 42.
    Blin N, Stafford DW. A general method for isolation of high molecular weight DNA from eukaryotes. Nucleic Acids Res. 1976;3(9):2303–8.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Mullis KB, Faloona FA, Scharf SJ, Saiki RK, Horn GT, Erlich H. Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. Biotechnol Ser. 1992;24:17–27.Google Scholar
  44. 44.
    Saiki RK, Bugawan TL, Horn GT, Mullis KB, Erlich HA. Analysis of enzymatically amplified β-globin and HLA-DQα DNA with allele-specific oligonucleotide probes. Nature. 1986;324(6093):163–6.PubMedCrossRefGoogle Scholar
  45. 45.
    van Pelt-Verkuil E, van Belkum A, Hays JP. Deoxynucleotide triphosphates and buffer components. In: Principles and technical aspects of PCR amplification. Dordrecht: Springer; 2008. p. 91–101.CrossRefGoogle Scholar
  46. 46.
    Wolffs P, Grage H, Hagberg O, Rådström P. Impact of DNA polymerases and their buffer systems on quantitative real-time PCR. J Clin Microbiol. 2004;42(1):408–11.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Bachmann B, Lüke W, Hunsmann G. Improvement of PCR amplified DNA sequencing with the aid of detergents. Nucleic Acids Res. 1990;18(5):1309.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Hopfer RL, Walden P, Setterquist S, Highsmith WE. Detection and differentiation of fungi in clinical specimens using polymerase chain reaction (PCR) amplification and restriction enzyme analysis. Med Mycol. 1993;31(1):65–75.CrossRefGoogle Scholar
  49. 49.
    Frackman S, Kobs G, Simpson D, Storts D. Betaine and DMSO: enhancing agents for PCR. Promega Notes. 1998;65(27–29):27–9.Google Scholar
  50. 50.
    Chase JW, Williams KR. Single-stranded DNA binding proteins required for DNA replication. Annu Rev Biochem. 1986;55(1):103–36.PubMedCrossRefGoogle Scholar
  51. 51.
    Henke W, Herdel K, Jung K, Schnorr D, Loening SA. Betaine improves the PCR amplification of GC-rich DNA sequences. Nucleic Acids Res. 1997;25(19):3957–8.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Nagai M, Yoshida A, Sato N. Additive effects of bovine serum albumin, dithiothreitol and glycerol on PCR. IUBMB Life. 1998;44(1):157–63.CrossRefGoogle Scholar
  53. 53.
    Park YH, Kohel R. Effect of concentration of MgCl2 on random-amplified DNA polymorphism. BioTechniques. 1994;16(4):652–6.PubMedGoogle Scholar
  54. 54.
    Ely JJ, Reeves-Daniel A, Campbell ML, Kohler S, Stone WH. Influence of magnesium ion concentration and PCR amplification conditions on cross-species PCR. Biotechniques. 1998;25(1):38–40, 42.PubMedGoogle Scholar
  55. 55.
    Birch DE, Kolmodin L, Wong J, Zangenberg GA, Zoccoli MA. Simplified hot start PCR. Nature. 1996;381:445–6.PubMedCrossRefGoogle Scholar
  56. 56.
    Peirson SN, Butler JN. Quantitative polymerase chain reaction. In: Circadian rhythms. New York: Springer; 2007. p. 349–62.Google Scholar
  57. 57.
    Carr AC, Moore SD, Lucia A. Robust quantification of polymerase chain reactions using global fitting. PLoS ONE. 2012;7(5):e37640.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Schefe JH, Lehmann KE, Buschmann IR, Unger T, Funke-Kaiser H. Quantitative real-time RT-PCR data analysis: current concepts and the novel “gene expression’s C T difference” formula. J Mol Med. 2006;84(11):901–10.PubMedCrossRefGoogle Scholar
  59. 59.
    Heid CA, Stevens J, Livak KJ, Williams PM. Real time quantitative PCR. Genome Res. 1996;6(10):986–94.PubMedCrossRefGoogle Scholar
  60. 60.
    Tichopad A, Dilger M, Schwarz G, Pfaffl MW. Standardized determination of real‐time PCR efficiency from a single reaction set‐up. Nucleic Acids Res. 2003;31(20):e122.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Ruijter JM, Ramakers C, Hoogaars WMH, Karlen Y, Bakker O, Van den Hoff MJB, Moorman AFM. Amplification efficiency: linking baseline and bias in the analysis of quantitative PCR data. Nucleic Acids Res. 2009;37(6):e45.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Helling RB, Goodman HM, Boyer HW. Analysis of endonuclease R·EcoRI fragments of DNA from lambdoid bacteriophages and other viruses by agarose-gel electrophoresis. J Virol. 1974;14(5):1235–44.PubMedPubMedCentralGoogle Scholar
  63. 63.
    Jeppson JO, Laurell CB, Franzen B. Agarose gel electrophoresis. Clin Chem. 1979;25(4):629–38.Google Scholar
  64. 64.
    Livak KJ, Flood SJ, Marmaro J, Giusti W, Deetz K. Oligonucleotides with fluorescent dyes at opposite ends provide a quenched probe system useful for detecting PCR product and nucleic acid hybridization. Genome Res. 1995;4(6):357–62.CrossRefGoogle Scholar
  65. 65.
    Tyagi S, Kramer FR. Molecular beacons: probes that fluoresce upon hybridization. Nat Biotechnol. 1996;14(3):303–8.PubMedCrossRefGoogle Scholar
  66. 66.
    Wittwer CT, Herrmann MG, Moss AA, Rasmussen RP. Continuous fluorescence monitoring of rapid cycle DNA amplification. Biotechniques. 1997;22(1):130–9.PubMedGoogle Scholar
  67. 67.
    Rychlik W, Rhoads RE. A computer program for choosing optimal oligonucleotides for filter hybridization, sequencing and in vitro amplification of DNA. Nucleic Acids Res. 1989;17(21):8543–51.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Lowe T, Sharefkin J, Yang SQ, Dieffenbach CW. A computer program for selection of oligonucleotide primers for polymerase chain reactions. Nucleic Acids Res. 1990;18(7):1757–61.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Tamura T, Holbrook SR, Kim S-H. A Macintosh computer program for designing DNA sequences that code for specific peptides and proteins. Biotechniques. 1991;10(6):782–4.PubMedGoogle Scholar
  70. 70.
    Lucas K, Busch M, Mössinger S, Thompson JA. An improved microcomputer program for finding gene-or gene family-specific oligonucleotides suitable as primers for polymerase chain reactions or as probes. Comput Appl Biosci CABIOS. 1991;7(4):525–9.PubMedGoogle Scholar
  71. 71.
    Mitsuhashi M. Technical report: part 2. Basic requirements for designing optimal PCR primers. J Clin Lab Anal. 1996;10(5):285–93.PubMedCrossRefGoogle Scholar
  72. 72.
    McConlogue L, Brow MAD, Innis MA. Structure-independent DNA amplification by PCR using 7-deaza-2′-deoxyguanosine. Nucleic Acids Res. 1988;16(20):9869.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Saiki RK. The design and optimization of the PCR. In: Erlich HA, editor. PCR technology: principles and applications for DNA amplification’. New York: Stockton; 1989. p. 7–16. http://www.publish.csiro.au/journals/asb Google Scholar
  74. 74.
    Brooks EM, Sheflin LG, Spaulding SW. Secondary structure in the 3′UTR of EGF and the choice of reverse transcriptases affect the detection of message diversity by RT-PCR. Biotechniques. 1995;19(5):806–12, 814–5.PubMedGoogle Scholar
  75. 75.
    McPherson MJ, Møller SG. PCR. BIOS Scientific Publishers Ltd. Oxford; 2000.Google Scholar
  76. 76.
    Dieffenbach CW, Lowe TM, Dveksler GS. General concepts for PCR primer design. PCR Methods Appl. 1993;3(3):S30–7.PubMedCrossRefGoogle Scholar
  77. 77.
    Watkins NE, SantaLucia J. Nearest-neighbor thermodynamics of deoxyinosine pairs in DNA duplexes. Nucleic Acids Res. 2005;33(19):6258–67.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    SantaLucia J. A unified view of polymer, dumbbell, and oligonucleotide DNA nearest-neighbor thermodynamics. Proc Natl Acad Sci. 1998;95(4):1460–5.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Xu W, Wang C, Zhu P, Guo T, Xu Y, Huang K, Luo Y. Real-time quantitative nicking endonuclease-mediated isothermal amplification with small molecular beacons. Analyst. 2016;141:2542–52.PubMedCrossRefGoogle Scholar
  80. 80.
    Koehler RT, Peyret N. Effects of DNA secondary structure on oligonucleotide probe binding efficiency. Comput Biol Chem. 2005;29(6):393–7.PubMedCrossRefGoogle Scholar
  81. 81.
    Bonnet G, Tyagi S, Libchaber A, Kramer FR. Thermodynamic basis of the enhanced specificity of structured DNA probes. Proc Natl Acad Sci. 1999;96(11):6171–6.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Stephenson FH. Calculations for molecular biology and biotechnology: a guide to mathematics in the laboratory. Boston: Academic; 2010.Google Scholar
  83. 83.
    Innis MA, Gelfand DH, Sninsky JJ. PCR strategies. San Diego: Academic; 1995.Google Scholar
  84. 84.
    Letowski J, Brousseau R, Masson L. Designing better probes: effect of probe size, mismatch position and number on hybridization in DNA oligonucleotide microarrays. J Microbiol Methods. 2004;57(2):269–78.PubMedCrossRefGoogle Scholar
  85. 85.
    Mathews DH, Burkard ME, Freier SM, Wyatt JR, Turner DH. Predicting oligonucleotide affinity to nucleic acid targets. RNA. 1999;5(11):1458–69.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Peyret N. Prediction of nucleic acid hybridization: parameters and algorithms. Detroit: Wayne State University; 2000.Google Scholar
  87. 87.
    Nazarenko I, Pires R, Lowe B, Obaidy M, Rashtchian A. Effect of primary and secondary structure of oligodeoxyribonucleotides on the fluorescent properties of conjugated dyes. Nucleic Acids Res. 2002;30(9):2089–195.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Nazarenko I, Lowe B, Darfler M, Ikonomi P, Schuster D, Rashtchian A. Multiplex quantitative PCR using self-quenched primers labeled with a single fluorophore. Nucleic Acids Res. 2002;30(9):e37.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Chun J-Y, Kim K-J, Hwang I-T, Kim Y-J, Lee D-H, Lee I-K, Kim J-K. Dual priming oligonucleotide system for the multiplex detection of respiratory viruses and SNP genotyping of CYP2C19 gene. Nucleic Acids Res. 2007;35(6):e40.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Obernosterer G, Martinez J, Alenius M. Locked nucleic acid-based in situ detection of microRNAs in mouse tissue sections. Nat Protoc. 2007;2(6):1508–14.PubMedCrossRefGoogle Scholar
  91. 91.
    Whitcombe D, Theaker J, Guy SP, Brown T, Little S. Detection of PCR products using self-probing amplicons and fluorescence. Nat Biotechnol. 1999;17(8):804–7.PubMedCrossRefGoogle Scholar
  92. 92.
    Moser DA, Neuberger EWI, Simon P. A quick one‐tube nested PCR‐protocol for EPO transgene detection. Drug Test Anal. 2012;4(11):870–5.PubMedCrossRefGoogle Scholar
  93. 93.
    Don R, Cox P, Wainwright B, Baker K, Mattick J. ‘Touchdown’ PCR to circumvent spurious priming during gene amplification. Nucleic Acids Res. 1991;19(14):4008.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Korbie DJ, Mattick JS. Touchdown PCR for increased specificity and sensitivity in PCR amplification. Nat Protoc. 2008;3(9):1452–6.PubMedCrossRefGoogle Scholar
  95. 95.
    Wilson IG. Inhibition and facilitation of nucleic acid amplification. Appl Environ Microbiol. 1997;63(10):3741.PubMedPubMedCentralGoogle Scholar
  96. 96.
    Liu-Stratton Y, Roy S, Sen CK. DNA microarray technology in nutraceutical and food safety. Toxicol Lett. 2004;150(1):29–42.PubMedCrossRefGoogle Scholar
  97. 97.
    Kostrzynska M, Bachand A. Application of DNA microarray technology for detection, identification, and characterization of food-borne pathogens. Can J Microbiol. 2006;52(1):1–8.PubMedCrossRefGoogle Scholar
  98. 98.
    Rasooly A, Herold KE. Food microbial pathogen detection and analysis using DNA microarray technologies. Foodborne Pathog Dis. 2008;5(4):531–50.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Borucki MK, Krug MJ, Muraoka WT, Call DR. Discrimination among Listeria monocytogenes isolates using a mixed genome DNA microarray. Vet Microbiol. 2003;92(4):351–62.PubMedCrossRefGoogle Scholar
  100. 100.
    Kato H, Saito K, Kimura T. A perspective on DNA microarray technology in food and nutritional science. Curr Opin Clin Nutr Metab Care. 2005;8(5):516–22.PubMedCrossRefGoogle Scholar
  101. 101.
    Donhauser SC, Niessner R, Seidel M. Sensitive quantification of Escherichia coli O157: H7, Salmonella enterica, and Campylobacter jejuni by combining stopped polymerase chain reaction with chemiluminescence flow-through DNA microarray analysis. Anal Chem. 2011;83(8):3153–60.PubMedCrossRefGoogle Scholar
  102. 102.
    Ping-Ping Z, Zhang J-Z, Yuan-Hai YOU, Yong-Ning WU. Detection of genetically modified crops by combination of multiplex PCR and low-density DNA microarray. Biomed Environ Sci. 2008;21(1):53–62.CrossRefGoogle Scholar
  103. 103.
    González SF, Krug MJ, Nielsen ME, Santos Y, Call DR. Simultaneous detection of marine fish pathogens by using multiplex PCR and a DNA microarray. J Clin Microbiol. 2004;42(4):1414–9.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Dirks RM, Pierce NA. Triggered amplification by hybridization chain reaction. Proc Natl Acad Sci U S A. 2004;101(43):15275–8.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Chemeris DA, Nikonorov YM, Vakhitov VA. Real-time hybridization chain reaction. Doklady biochemistry and biophysics. 2008;419(1):53–55.Google Scholar
  106. 106.
    Vincent M, Xu Y, Kong H. Helicase‐dependent isothermal DNA amplification. EMBO Rep. 2004;5(8):795–800.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Dahl F, Banér J, Gullberg M, Mendel-Hartvig M, Landegren U, Nilsson M. Circle-to-circle amplification for precise and sensitive DNA analysis. Proc Natl Acad Sci U S A. 2004;101(13):4548–53.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Niu S, Jiang Y, Zhang S. Fluorescence detection for DNA using hybridization chain reaction with enzyme-amplification. Chem Commun. 2010;46(18):3089–91.CrossRefGoogle Scholar
  109. 109.
    Wiedmann M, Wilson WJ, Czajka J, Luo J, Barany F, Batt CA. Ligase chain reaction (LCR)-overview and applications. PCR Methods Appl. 1994;3(4):S51–64.PubMedCrossRefGoogle Scholar
  110. 110.
    Dong J, Cui X, Deng Y, Tang Z. Amplified detection of nucleic acid by G-quadruplex based hybridization chain reaction. Biosens Bioelectron. 2012;38(1):258–63.PubMedCrossRefGoogle Scholar
  111. 111.
    Evanko D. Hybridization chain reaction. Nat Methods. 2004;1(3):186–7.CrossRefGoogle Scholar
  112. 112.
    Huang F, Xu P, Liang H. Using dual-polarization interferometry to study surface-initiated DNA hybridization chain reactions in real time. Biosens Bioelectron. 2014;51:317–23.PubMedCrossRefGoogle Scholar
  113. 113.
    Huang J, Wu Y, Chen Y, Zhu Z, Yang X, Yang CJ, Wang K, Tan W. Pyrene‐excimer probes based on the hybridization chain reaction for the detection of nucleic acids in complex biological fluids. Angew Chem Int Ed. 2011;50(2):401–4.CrossRefGoogle Scholar
  114. 114.
    Ikbal J, Lim GS, Gao Z. The hybridization chain reaction in the development of ultrasensitive nucleic acid assays. TrAC Trends Anal Chem. 2015;64:86–99.CrossRefGoogle Scholar
  115. 115.
    Sen D, Gilbert W. Formation of parallel four-stranded complexes by guanine-rich motifs in DNA and its implications for meiosis. Nature. 1988;334:364–6.PubMedCrossRefGoogle Scholar
  116. 116.
    Green SJ, Lubrich D, Turberfield AJ. DNA hairpins: fuel for autonomous DNA devices. Biophys J. 2006;91(8):2966–75.PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Wang D, Tang W, Wu X, Wang X, Chen G, Chen Q, Li N, Liu F. Highly selective detection of single-nucleotide polymorphisms using a quartz crystal microbalance biosensor based on the toehold-mediated strand displacement reaction. Anal Chem. 2012;84(16):7008–14.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Singapore 2016

Authors and Affiliations

  • Wentao Xu
    • 1
    • 2
  1. 1.Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional EngineeringChina Agricultural UniversityBeijingChina
  2. 2.Beijing Laboratory for Food Quality and Safety, College of Food Science & Nutritional EngineeringChina Agricultural UniversityBeijingChina

Personalised recommendations