Adaptable Methods to Extract Nucleic Acid Targets and Evaluate Quality

  • Wentao Xu


Extraction of nucleic acid targets (DNA and RNA) is a basic method that is used in molecular biology. In recent years, nucleic acid analysis has become an important analytical tool in many fields, demanding high-quality DNA or RNA. Nucleic acid targets can be extracted from various materials for subsequent processes, for example, PCR test. To date, many different ways have been developed to extract nucleic acid, such as column-based and solution-based methods. For the success of subsequent tests, extracting protocols should result in high purity, yield, and reproducibility of the nucleic acid targets, and the accuracy, speed, and reliability of the protocols should be maximal, while the contamination should be minimized.


Nucleic acid extraction Sample preparation Cell lysis Purification DNA quantification 



This work is supported by the National Science and Technology Major Project (2016ZX08012-004). Many thanks to Wenying Tian and Xingtian Cui for their kind help in manuscript conception and preparation.


  1. 1.
    Meyer R. Development and application of DNA analytical methods for the detection of GMOs in food. Food Control. 1999;10:391–9. doi: 10.1016/S0956-7135(99)00081-X.CrossRefGoogle Scholar
  2. 2.
    Kharazmi M, Bauer T, Hammes WP, Hertel C. Effect of food processing on the fate of DNA with regard to degradation and transformation capability in Bacillus subtilis. Syst Appl Microbiol. 2003;26(4):495–501. doi: 10.1078/072320203770865774.CrossRefPubMedGoogle Scholar
  3. 3.
    Weighardt F. GMO quantification in processed food and feed. Nat Biotechnol. 2007;25(11):1213–14. doi: 10.1038/nbt1107-1213c.CrossRefPubMedGoogle Scholar
  4. 4.
    Lipp M, Shillito R, Giroux R, Spiegelhalter F, Charlton S, Pinero D, Song P. Polymerase chain reaction technology as analytical tool in agricultural biotechnology. J AOAC Int. 2005;88(1):136–55.PubMedGoogle Scholar
  5. 5.
    Spiegelhalter F, Lauter FR, Russell JM. Detection of genetically modified food products in a commercial laboratory. J Food Sci. 2001;66(5):634–40. doi: 10.1111/j.1365-2621.2001.tb04613.x.CrossRefGoogle Scholar
  6. 6.
    Gryson N, Dewettinck K, Messens K. Detection of genetically modified soy in doughs and cookies. Cereal Chem. 2007;84(2):109–15. doi: 10.1094/Cchem-84-2-0109.CrossRefGoogle Scholar
  7. 7.
    Cankar K, Stebih D, Dreo T, Zel J, Gruden K. Critical points of DNA quantification by real-time PCR – effects of DNA extraction method and sample matrix on quantification of genetically modified organisms. BMC Biotechnol. 2006;6. doi:Artn 37  10.1186/1472-6750-6-37.
  8. 8.
    Phillips† DAJ. Gavin Brooks, Biotechnology in Healthcare, An introduction to biopharmaceuticals. J Pharm Pharmacol. 2002;(No.10):1433.Google Scholar
  9. 9.
    Guangming X, Luolu L, Yanyong, Suqiong X, Wuqing, Xiqing L, Jiangdong. DNA extraction method for AFLP analysis in citrus. J Fruit Sci. 2002;04:267–8.Google Scholar
  10. 10.
    Anklam E, Gadani F, Heinze P, Pijnenburg H, Eede GVD. Analytical methods for detection and determination of genetically modified organisms in agricultural crops and plant-derived food products. Eur Food Res Technol. 2002;214(1):3–26.CrossRefGoogle Scholar
  11. 11.
    Matsuoka T, Kuribara H, Akiyama H, Miura H, Goda Y, Kusakabe Y, Isshiki K, Toyoda M, Hino A. A multiplex PCR method of detecting recombinant DNAs from five lines of genetically modified maize. J Food Hyg Soc Jpn. 2001;42(1):24–32. doi: 10.3358/shokueishi.42.24.CrossRefGoogle Scholar
  12. 12.
    Meyer R, Candrian U. PCR-based DNA analysis for the identification and characterization of food components. Food Sci Technol-Leb. 1996;29(1–2):1–9.CrossRefGoogle Scholar
  13. 13.
    Van Hoef AMA, Kok EJ, Bouw E, Kuiper HA, Keijer J. Development and application of a selective detection method for genetically modified soy and soy-derived products. Food Addit Contam. 1998;15(7):767–74.CrossRefPubMedGoogle Scholar
  14. 14.
    Kuiper HA. Summary report of the ILSI Europe workshop on detection methods for novel foods derived from genetically modified organisms. Food Control. 1999;10(6):339–49. doi: 10.1016/S0956-7135(99)00072-9.CrossRefGoogle Scholar
  15. 15.
    Rossen L, Norskov P, Holmstrom K, Rasmussen OF. Inhibition of Pcr by components of food samples, microbial diagnostic assays and DNA-extraction solutions. Int J Food Microbiol. 1992;17(1):37–45. doi: 10.1016/0168-1605(92)90017-W.CrossRefPubMedGoogle Scholar
  16. 16.
    Tinker NA, Fortin MG, Mather DE. Random amplified polymorphic DNA and pedigree relationships in Spring Barley. Theor Appl Genet. 1993;85(8):976–84.CrossRefPubMedGoogle Scholar
  17. 17.
    Zimmermann A, Lüthy J, Pauli U. Quantitative and qualitative evaluation of nine different extraction methods for nucleic acids on soya bean food samples. Z Lebensm Unters Forsch. 1998;207(2):81–90.CrossRefGoogle Scholar
  18. 18.
    Hammes† PDWP, Hertel‡ DC. Mit Hilfe der Gentechnik erzeugte Lebensmittel: Novel Foods und die Problematik ihres Nachweises. Biologie in unserer Zeit 1995;(No.4):246–55.Google Scholar
  19. 19.
    Zimmermann A, Luthy J, Pauli U. Quantitative and qualitative evaluation of nine different extraction methods for nucleic acids on soya bean food samples. Z Lebensm Unters F A. 1998;207(2):81–90. doi: 10.1007/s002170050299.CrossRefGoogle Scholar
  20. 20.
    Di Bernardo G, Del Gaudio S, Galderisi U, Cascino A, Cipollaro M. Comparative evaluation of different DNA extraction procedures from food samples. Biotechnol Progr. 2007;23(2):297–301. doi: 10.1021/bp060182m.CrossRefGoogle Scholar
  21. 21.
    Olexova L, Dovicovicova L, Kuchta T. Comparison of three types of methods for the isolation of DNA from flours, biscuits and instant paps. Eur Food Res Technol. 2004;218(4):390–3. doi: 10.1007/s00217-004-0872-y.CrossRefGoogle Scholar
  22. 22.
    Gryson N, Dewettinck K, Messens K. Influence of cocoa components on the PCR detection of soy lecithin DNA. Eur Food Res Technol. 2007;226(1–2):247–54. doi: 10.1007/s00217-006-0533-4.CrossRefGoogle Scholar
  23. 23.
    Kakihara Y, Matsufuji H, Chino M, Takeda M. Extraction and detection of endogenous soybean DNA from fermented foods. Food Control. 2006;17(10):808–13. doi: 10.1016/j.foodcont.2005.05.006.CrossRefGoogle Scholar
  24. 24.
    Gryson N, Messens K, Dewettinck K. Evaluation and optimisation of five different extraction methods for soy DNA in chocolate and biscuits. Extraction of DNA as a first step in GMO analysis. J Sci Food Agr. 2004;84(11):1357–63. doi: 10.1002/jsfa.1767.CrossRefGoogle Scholar
  25. 25.
    Simonet P, Capellano A, Navarro E, Bardin R, Moiroud A. An improved method for lysis of Frankia with achromopeptidase allows detection of new plasmids. Can J Microbiol. 1984;30(10):1292–5.CrossRefGoogle Scholar
  26. 26.
    Rohn S, Rawel HM, Kroll J. Inhibitory effects of plant phenols on the activity of selected enzymes. J Agr Food Chem. 2002;50(12):3566–71. doi: 10.1021/jf011714b.CrossRefGoogle Scholar
  27. 27.
    Singh RP, Singh M, King RR. Use of citric acid for neutralizing polymerase chain reaction inhibition by chlorogenic acid in potato extracts. J Virol Methods. 1998;74(2):231–5. doi: 10.1016/S0166-0934(98)00092-5.CrossRefPubMedGoogle Scholar
  28. 28.
    Demeke T, Jenkins GR. Influence of DNA extraction methods, PCR inhibitors and quantification methods on real-time PCR assay of biotechnology-derived traits. Anal Bioanal Chem. 2010;396(6):1977–90. doi: 10.1007/s00216-009-3150-9.CrossRefPubMedGoogle Scholar
  29. 29.
    Demeke T, Ratnayaka I, Phan A. Effects of DNA extraction and purification methods on real-time quantitative PCR analysis of roundup ready (R) soybean. J AOAC Int. 2009;92(4):1136–44.PubMedGoogle Scholar
  30. 30.
    Di Bernardo G, Galderisi U, Cipollaro M, Cascino A. Methods to improve the yield and quality of DNA from dried and processed figs. Biotechnol Progr. 2005;21(2):546–9. doi: 10.1021/bp049710p.CrossRefGoogle Scholar
  31. 31.
    Bernardo GD, Gaudio SD, Galderisi U, Cascino A, Cipollaro M. Comparative evaluation of different DNA extraction procedures from food samples. Biotechnol Progr. 2007;23(2):297–301.CrossRefGoogle Scholar
  32. 32.
    Corbisier P, Broothaerts W, Gioria S, Schimmel H, Burns M, Baoutina A, Emslie KR, Furui S, Kurosawa Y, Holden MJ, Kim HH, Lee Y, Kawaharasaki M, Sin D, Wang J. Toward metrological traceability for DNA fragment ratios in GM quantification. 1. Effect of DNA extraction methods on the quantitative determination of Bt176 corn by real-time PCR. J Agr Food Chem. 2007;55(9):3249–57. doi: 10.1021/jf062931l.CrossRefGoogle Scholar
  33. 33.
    Smith DS, Maxwell PW, De Boer SH. Comparison of several methods for the extraction of DNA from potatoes and potato-derived products. J Agr Food Chem. 2005;53(26):9848–59. doi: 10.1021/jf051201v.CrossRefGoogle Scholar
  34. 34.
    Miller DN, Bryant JE, Madsen EL, Ghiorse WC. Evaluation and optimization of DNA extraction and purification procedures for soil and sediment samples. Appl Environ Microbiol. 1999;65(11):4715–24.PubMedPubMedCentralGoogle Scholar
  35. 35.
    Burgmann H, Pesaro M, Widmer F, Zeyer J. A strategy for optimizing quality and quantity of DNA extracted from soil. J Microbiol Methods. 2001;45(1):7–20. doi: 10.1016/S0167-7012(01)00213-5.CrossRefPubMedGoogle Scholar
  36. 36.
    Tien CC, Chao CC, Chao WL. Methods for DNA extraction from various soils: a comparison. J Appl Microbiol. 1999;86(6):937–43. doi: 10.1046/j.1365-2672.1999.00775.x.CrossRefGoogle Scholar
  37. 37.
    Yan-hong G, Jun L. Experiments on genomic DNA isolation from the leaves of litsea coreana lévl.var.lanuginosa. Sichuan For Sci Technol. 2003;(02):47–50.Google Scholar
  38. 38.
    R P, HY S, QS L, Y. W. Extraction and characterization of total DNA from Dendrobium. Zhongguo Zhong Yao Za Zhi 2003;(No.12):1129–31.Google Scholar
  39. 39.
    Hong YK, Sohn CH, Lee KW, Kim HG. Nucleic acid extraction from seaweed tissues for polymerase chain reaction. J Mar Biotechnol. 1997;5(2–3):95–9.Google Scholar
  40. 40.
    Ling J, lihong C. A method for extracting DNA of Ginkgo biloba. Plant Physiol Commun. 2000;04:340–2.Google Scholar
  41. 41.
    Changchun Y, Suhua S, Chuangxing Y. Total DNA extracted from pure tea phenols rich in plant leaves. Sun Yatsen Univ For 2001;(03):1–4.Google Scholar
  42. 42.
    Martín MP, Winka K. Alternative methods of extracting and amplifying DNA from lichens. Lichenologist. 2000;32(2):189–96.CrossRefGoogle Scholar
  43. 43.
    Li Z, Fei L, Gang W. Overview of animal DNA extraction. Anim Husb Vet Med. 2008;03:66–8.Google Scholar
  44. 44.
    Shiyan, Xiaobing W, Peng Y, Zhe Z. A method for DNA extraction from tanned leather and scales of Chinese alligator. Curr Zool. 2004;02:297–301.Google Scholar
  45. 45.
    Gang R, Ming L, Yidong N, Jing W, Fuwen W, Shengguo F. A new method for DNA extraction from the dried skins. Chin J Zool. 2001;04:53–7.Google Scholar
  46. 46.
    Bajorath J, Raghunathan S, Hinrichs W, Saenger W. Long-range structural-changes in proteinase-K triggered by calcium-ion removal. Nature. 1989;337(6206):481–4. doi: 10.1038/337481a0.CrossRefPubMedGoogle Scholar
  47. 47.
    Hong L, Wen W, Liming S. DNA extraction and PCR Muntiacus animal skin sample amplification. Zool Res. 1995;02:146–52.Google Scholar
  48. 48.
    Merheb M, Vaiedelich S, Maniguet T, Hanni C. Mitochondrial DNA, restoring Beethovens music. Mitochondrial DNA. 2016;27(1):355–9. doi: 10.3109/19401736.2014.895988.CrossRefPubMedGoogle Scholar
  49. 49.
    Quan Z, Gang F, Yongmei W. A simple and fast method for extracting DNA from blood and tissues. Chem Life. 1994;04:26–7.Google Scholar
  50. 50.
    Jinlong H, Guyue L, Juan Z, Mei Z, Yangzhi Z. Study on the extraction of high quality genomic DNA from porcine blood. Shanghai J Anim Husb Vet Med 2004;(03):23–22.Google Scholar
  51. 51.
    Qingmin W, Qiaohong L, Yun T, Lingxun S, Hui W, Yan C, Zhenrong Y. Comparison of methods for DNA extraction from peripheral blood. Chin J Lab Med. 2004;07:50–1.Google Scholar
  52. 52.
    Deuter R, Peitsch S, Hertel S, Muller O. A method for preparation of fecal DNA suitable for Pcr. Nucleic Acids Res. 1995;23(18):3800–1. doi: 10.1093/nar/23.18.3800.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Gerloff U, Schlotterer C, Rassmann K, Rambold I, Hohmann G, Fruth B, Tautz D. Amplification of hypervariable simple sequence repeats (microsatellites) from excremental DNA of wild living bonobos (Pan-paniscus). Mol Ecol. 1995;4(4):515–18. doi: 10.1111/j.1365-294X.1995.tb00247.x.CrossRefGoogle Scholar
  54. 54.
    Baowei Z, Fuwen W, Ming L, Xiaoping L. A simple protocol for DNA extraction from faeces of the giant panda and lesser panda. Acta Zool Sin. 2004;03:452–8.Google Scholar
  55. 55.
    Constable JJ, Packer C, Collins DA, Pusey AE. Nuclear-DNA from primate dung. Nature. 1995;373(6513):393–3. doi: 10.1038/373393a0.Google Scholar
  56. 56.
    Savill MG, Murray SR, Scholes P, Maas EW, McCormick RE, Moore EB, Gilpin BJ. Application of polymerase chain reaction (PCR) and TaqMan PCR techniques to the detection and identification of Rhodococcus coprophilus in faecal samples. J Microbiol Methods. 2001;47(3):355–68.CrossRefPubMedGoogle Scholar
  57. 57.
    Hua Z, Xunlong L, Rongping W, Zhonglai L. An improved method for extracting DNA from the feces of giant pandas. Acta Zool Sin. 2003;05:670–4.Google Scholar
  58. 58.
    Jianyuan Z, Jinhua L, Yang L, Xuhua Y. Research on DNA extraction from old faeces of Macaca thibetana. Acta Theriol Sin. 2005;04:100–3.Google Scholar
  59. 59.
    Torsvik V, Goksoyr J, Daae FL. High diversity in DNA of soil bacteria. Appl Environ Microbiol. 1990;56(3):782–7.PubMedPubMedCentralGoogle Scholar
  60. 60.
    Wilson IG. Inhibition and facilitation of nucleic acid amplification. Appl Environ Microbiol. 1997;63(10):3741–51.PubMedPubMedCentralGoogle Scholar
  61. 61.
    Torsvik VL, Goksoyr J. Determination of bacterial DNA in soil. Soil Biol Biochem. 1978;10(1):7–12. doi: 10.1016/0038-0717(78)90003-2.CrossRefGoogle Scholar
  62. 62.
    Bakken LR, Lindahl V. Recovery of bacterial cells from soil. Berlin: Springer; 1995.CrossRefGoogle Scholar
  63. 63.
    Tanner MA, Goebel BM, Dojka MA, Pace NR. Specific ribosomal DNA sequences from diverse environmental settings correlate with experimental contaminants. Appl Environ Microbiol. 1998;64(8):3110–13.PubMedPubMedCentralGoogle Scholar
  64. 64.
    Ogram A, Sayler GS, Gustin D, Lewis RJ. DNA adsorption to soils and sediments. Environ Sci Technol. 1988;22(8):982–4. doi: 10.1021/Es00173a020.CrossRefPubMedGoogle Scholar
  65. 65.
    van Heijenoort J. Formation of the glycan chains in the synthesis of bacterial peptidoglycan. Glycobiology. 2001;11(3):25r–36r.CrossRefPubMedGoogle Scholar
  66. 66.
    Koch AL. Bacterial wall as target for attack: past, present, and future research. Clin Microbiol Rev. 2003;16(4):673-+. doi: 10.1128/Cmr.16.4.673-687.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Vingataramin L, Frost EH. A single protocol for extraction of gDNA from bacteria and yeast. Biotechniques. 2015;58(3):120–5. doi: 10.2144/000114263.CrossRefPubMedGoogle Scholar
  68. 68.
    Antony-Babu S, Murat C, Deveau A, Le Tacon F, Frey-Klett P, Uroz S. An improved method compatible with metagenomic analyses to extract genomic DNA from soils in Tuber melanosporum orchards. J Appl Microbiol. 2013;115(1):163–70. doi: 10.1111/jam.12205.CrossRefPubMedGoogle Scholar
  69. 69.
    Romanelli AM, Fu J, Herrera ML, Wickes BL. A universal DNA extraction and PCR amplification method for fungal rDNA sequence-based identification. Mycoses. 2014;57(10):612–22. doi: 10.1111/myc.12208.CrossRefPubMedGoogle Scholar
  70. 70.
    Watson A, Ramstad PE. Corn: chemistry and technology. Food Chem. 1988;(No.1):410–18.Google Scholar
  71. 71.
    Anklam E, Neumann DA. Method development in relation to regulatory requirements for detection of GMOs in the food chain. J AOAC Int. 2002;85(3):754–6.PubMedGoogle Scholar
  72. 72.
    H Y, K S. Two detection methods of genetically modified organisms in agricultural crops and plant-derived food products. Eur Food Res Technol. 2003;214:3–26.Google Scholar
  73. 73.
    Poinar HN, Hofreiter M, Spaulding WG, Martin PS, Stankiewicz BA, Bland H, Evershed RP, Possnert G, Paabo S. Molecular coproscopy: dung and diet of the extinct ground sloth Nothrotheriops shastensis. Science. 1998;281(5375):402–6. doi: 10.1126/science.281.5375.402.CrossRefPubMedGoogle Scholar
  74. 74.
    Costa J, Melo VS, Santos CG, Oliveira MBPP, Mafra I. Tracing tree nut allergens in chocolate: a comparison of DNA extraction protocols. Food Chem. 2015;187:469–76. doi: 10.1016/j.foodchem.2015.04.073.CrossRefPubMedGoogle Scholar
  75. 75.
    Ageno M Fau – Dore E, Dore E Fau – Frontali C, Frontali C. The alkaline denaturation of DNA. Biophys J (0006-3495 (Print)). doi:D – NLM: PMC1367631 EDAT- 1969/11/01 MHDA- 1969/11/01 00:01 CRDT- 1969/11/01 00:00 AID - S0006-3495(69)86452-0 [pii] AID -  10.1016/S0006-3495(69)86452-0 [doi] PST – publish. 1969.
  76. 76.
    Vella F. Experimental biochemistry – Stenesh. J Biochem Educ. 1984;(No.3):142–3. 1984.Google Scholar
  77. 77.
    Sambrook J, Russell DW. Molecular cloning: a laboratory manual by Joseph Sambrook; David W. Russell. Q Rev Biol. 2001;(No.3):348–9.Google Scholar
  78. 78.
    Freifelder D. The DNA molecule, structure and properties. Biochem Educ. 1978;(No.2):46Google Scholar
  79. 79.
    Holden MJ, Haynes RJ, Rabb SA, Satija N, Yang K, Blasic JR. Factors affecting quantification of total DNA by UV spectroscopy and PicoGreen fluorescence. J Agr Food Chem. 2009;57(16):7221–6. doi: 10.1021/jf901165h.CrossRefGoogle Scholar
  80. 80.
    Singer VL, Jones LJ, Yue ST, Haugland RP. Characterization of PicoGreen reagent and development of a fluorescence-based solution assay for double-stranded DNA quantitation. Anal Biochem. 1997;249(2):228–38. doi: 10.1006/abio.1997.2177.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Singapore 2016

Authors and Affiliations

  • Wentao Xu
    • 1
    • 2
  1. 1.Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional EngineeringChina Agricultural UniversityBeijingChina
  2. 2.Beijing Laboratory for Food Quality and Safety, College of Food Science & Nutritional EngineeringChina Agricultural UniversityBeijingChina

Personalised recommendations