Advertisement

The Identification and Detection Technology of Research in Microorganisms Including Living or Dead Bacteria

  • Wentao Xu
Chapter

Abstract

Both dead and living bacteria can affect food quality. In recent years, the development of microbiological testing has undergone a series of progressions from traditional methods—including microbial cultivation, physiological and biochemical testing, instrument analysis, and immunology—to molecular biological detection. Reviewing its developments, it can be seen that the detection is becoming more rapid, sensitive, precise, integrated, and low cost. Of course, when all methods of microbial detection are compared, only living bacteria that detected by traditional methods could yield false negative results, especially if there are dormant bacteria. But with molecular methods, all microorganisms can be detected. With the development of technology, a lot of focus has been given to identification and detection technology for dead and living bacteria, which has massive potential and important significance in the area of microorganisms. There exists prospects of novel detection techniques for discrimination of viable and nonviable microorganisms, especially some more sensitive, precise, and comprehensive ones.

Keywords

Viable Nonviable Bacteria Nucleic acid analysis Amplification 

Notes

Acknowledgments

This work is supported by the Ministry of Science and Technology of Beijing (XX2014B069). Many thanks to Yuancong Xu, for her kindly help in manuscript conception and preparation.

References

  1. 1.
    Day J, Basavanna U, Sharma S. Development of a cell culture method to isolate and enrich Salmonella enterica serotype enteritidis from shell eggs for subsequent detection by real-time PCR. Appl Environ Microbiol. 2009;75(16):5321–7.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Charles RC, Sultana T, Alam MM, Yu Y, Wu-Freeman Y, Bufano MK, Rollins SM, Tsai L, Harris JB, Larocque RC. Identification of immunogenic Salmonella enterica serotype Typhi antigens expressed in chronic biliary carriers of S. Typhi in Kathmandu, Nepal. PLoS Negl Trop Dis. 2013;7(8):e2335.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Nadkarni MA, Martin FE, Jacques NA, Hunter N. Determination of bacterial load by real-time PCR using a broad-range (universal) probe and primers set. Microbiology. 2002;148(1):257–66.PubMedCrossRefGoogle Scholar
  4. 4.
    Shi H, Xu W, Trinh Q, Luo Y, Liang Z, Li Y, Huang K. Establishment of a viable cell detection system for microorganisms in wine based on ethidium monoazide and quantitative PCR. Food Control. 2012;27(1):81–6.CrossRefGoogle Scholar
  5. 5.
    Fernández M, Linares DM, del Río B, Ladero V, Alvarez MA. HPLC quantification of biogenic amines in cheeses: correlation with PCR-detection of tyramine-producing microorganisms. J Dairy Res. 2007;74(03):276–82.PubMedCrossRefGoogle Scholar
  6. 6.
    Sasser M. Identification of bacteria by gas chromatography of cellular fatty acids. 1990.Google Scholar
  7. 7.
    Claydon MA, Davey SN, Edwards-Jones V, Gordon DB. The rapid identification of intact microorganisms using mass spectrometry. Nat Biotechnol. 1996;14(11):1584–6.PubMedCrossRefGoogle Scholar
  8. 8.
    Buszewski B, Szumski M, Kłodzińska E, Dahm H. Separation of bacteria by capillary electrophoresis. J Sep Sci. 2003;26(11):1045–9.CrossRefGoogle Scholar
  9. 9.
    Marilley L, Ampuero S, Zesiger T, Casey MG. Screening of aroma-producing lactic acid bacteria with an electronic nose. Int Dairy J. 2004;14(10):849–56.CrossRefGoogle Scholar
  10. 10.
    Huang X-z, Tan H-f, Chen H. Survey of Salmonella contamination in food and evaluation of Vitek microbial analytical system. J Trop Med. 2007;3:022.Google Scholar
  11. 11.
    Zhao Y, Ye M, Chao Q, Jia N, Ge Y, Shen H. Simultaneous detection of multifood-borne pathogenic bacteria based on functionalized quantum dots coupled with immunomagnetic separation in food samples. J Agric Food Chem. 2008;57(2):517–24.CrossRefGoogle Scholar
  12. 12.
    Dudman W. Immune diffusion analysis of the extracellular soluble antigens of two strains of Rhizobium meliloti. J Bacteriol. 1964;88(3):782–94.PubMedPubMedCentralGoogle Scholar
  13. 13.
    Peng Y-s, Peng K-y. A study on the possible utilization of immunodiffusion and immunofluorescence techniques as the diagnostic methods for American foulbrood of honeybees (Apis mellifera). J Invertebr Pathol. 1979;33(3):284–9.CrossRefGoogle Scholar
  14. 14.
    Li J, Xia K, Yu C. Detection of Alicyclobacillus acidoterrestris in apple juice concentrate by enzyme-linked immunosorbent assay. Food Control. 2013;30(1):251–4.CrossRefGoogle Scholar
  15. 15.
    Hou J-Y, Liu T-C, Lin G-F, Li Z-X, Zou L-P, Li M, Wu Y-S. Development of an immunomagnetic bead-based time-resolved fluorescence immunoassay for rapid determination of levels of carcinoembryonic antigen in human serum. Anal Chim Acta. 2012;734:93–8.PubMedCrossRefGoogle Scholar
  16. 16.
    Wong K, Chua K, Lam S. Immunohistochemical detection of infected neurons as a rapid diagnosis of enterovirus 71 encephalomyelitis. Ann Neurol. 1999;45(2):271–2.PubMedCrossRefGoogle Scholar
  17. 17.
    Justé A, Thomma B, Lievens B. Recent advances in molecular techniques to study microbial communities in food-associated matrices and processes. Food Microbiol. 2008;25(6):745–61.PubMedCrossRefGoogle Scholar
  18. 18.
    Bottari B, Ercolini D, Gatti M, Neviani E. Application of FISH technology for microbiological analysis: current state and prospects. Appl Microbiol Biotechnol. 2006;73(3):485–94.PubMedCrossRefGoogle Scholar
  19. 19.
    Lenaerts J, Lappin-Scott HM, Porter J. Improved fluorescent in situ hybridization method for detection of bacteria from activated sludge and river water by using DNA molecular beacons and flow cytometry. Appl Environ Microbiol. 2007;73(6):2020–3.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Bertaux J, Gloger U, Schmid M, Hartmann A, Scheu S. Routine fluorescence in situ hybridization in soil. J Microbiol Methods. 2007;69(3):451–60.PubMedCrossRefGoogle Scholar
  21. 21.
    Brigham CJ, Speth DR, Rha C, Sinskey AJ. Whole-genome microarray and gene deletion studies reveal regulation of the polyhydroxyalkanoate production cycle by the stringent response in Ralstonia eutropha H16. Appl Environ Microbiol. 2012;78(22):8033–44.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Chandler DP, Knickerbocker C, Bryant L, Golova J, Wiles C, Williams KH, Peacock AD, Long PE. Profiling in situ microbial community structure with an amplification microarray. Appl Environ Microbiol. 2013;79(3):799–807.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Oblath EA, Henley WH, Alarie JP, Ramsey JM. A microfluidic chip integrating DNA extraction and real-time PCR for the detection of bacteria in saliva. Lab Chip. 2013;13(7):1325–32.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Hierro N, Esteve-Zarzoso B, González Á, Mas A, Guillamón JM. Real-time quantitative PCR (QPCR) and reverse transcription-QPCR for detection and enumeration of total yeasts in wine. Appl Environ Microbiol. 2006;72(11):7148–55.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    White RA, Blainey PC, Fan HC, Quake SR. Digital PCR provides sensitive and absolute calibration for high throughput sequencing. BMC Genomics. 2009;10(1):1.CrossRefGoogle Scholar
  26. 26.
    Kim TG, Jeong S-Y, Cho K-S. Comparison of droplet digital PCR and quantitative real-time PCR for examining population dynamics of bacteria in soil. Appl Microbiol Biotechnol. 2014;98(13):6105–13.PubMedCrossRefGoogle Scholar
  27. 27.
    Ottesen EA, Hong JW, Quake SR, Leadbetter JR. Microfluidic digital PCR enables multigene analysis of individual environmental bacteria. Science. 2006;314(5804):1464–7.PubMedCrossRefGoogle Scholar
  28. 28.
    Chamberlain JS, Gibbs RA, Rainer JE, Nguyen PN, Thomas C. Deletion screening of the Duchenne muscular dystrophy locus via multiplex DNA amplification. Nucleic Acids Res. 1988;16(23):11141–56.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Lindström M, Keto R, Markkula A, Nevas M, Hielm S, Korkeala H. Multiplex PCR assay for detection and identification of Clostridium botulinum types A, B, E, and F in food and fecal material. Appl Environ Microbiol. 2001;67(12):5694–9.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    De Medici D, Anniballi F, Wyatt GM, Lindström M, Messelhäußer U, Aldus CF, Delibato E, Korkeala H, Peck MW, Fenicia L. Multiplex PCR for detection of botulinum neurotoxin-producing clostridia in clinical, food, and environmental samples. Appl Environ Microbiol. 2009;75(20):6457–61.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Ngamwongsatit P, Buasri W, Pianariyanon P, Pulsrikarn C, Ohba M, Assavanig A, Panbangred W. Broad distribution of enterotoxin genes (hblCDA, nheABC, cytK, and entFM) among Bacillus thuringiensis and Bacillus cereus as shown by novel primers. Int J Food Microbiol. 2008;121(3):352–6.PubMedCrossRefGoogle Scholar
  32. 32.
    Monteiro J, Widen RH, Pignatari AC, Kubasek C, Silbert S. Rapid detection of carbapenemase genes by multiplex real-time PCR. J Antimicrob Chemother. 2012;67(4):906–9.PubMedCrossRefGoogle Scholar
  33. 33.
    Lee N, Kwon KY, Oh SK, Chang H-J, Chun HS, Choi S-W. A multiplex PCR assay for simultaneous detection of Escherichia coli O157: H7, Bacillus cereus, Vibrio parahaemolyticus, Salmonella spp., Listeria monocytogenes, and Staphylococcus aureus in Korean ready-to-eat food. Foodborne Pathog Dis. 2014;11(7):574–80.PubMedCrossRefGoogle Scholar
  34. 34.
    Yuan Y, Xu W, Zhai Z, Shi H, Luo Y, Chen Z, Huang K. Universal primer-multiplex PCR approach for simultaneous detection of Escherichia coli, Listeria monocytogenes, and Salmonella spp. in food samples. J Food Sci. 2009;74(8):M446–52.PubMedCrossRefGoogle Scholar
  35. 35.
    Xu W, Bai W, Luo Y, Yuan Y, Zhang W, Guo X, Huang K. A novel common single primer multiplex polymerase chain reaction (CSP-M-PCR) method for the identification of animal species in minced meat. J Sci Food Agric. 2008;88(15):2631–7.CrossRefGoogle Scholar
  36. 36.
    Zhang C, Xu W, Zhai Z, Luo Y, Yan X, Zhang N, Huang K. Universal primer-multiplex-polymerase chain reaction (UP-M-PCR) and capillary electrophoresis–laser-induced fluorescence analysis for the simultaneous detection of six genetically modified maize lines. J Agric Food Chem. 2011;59(10):5188–94.PubMedCrossRefGoogle Scholar
  37. 37.
    Xu W, Zhai Z, Huang K, Zhang N, Yuan Y, Shang Y, Luo Y. A novel universal primer-multiplex-PCR method with sequencing gel electrophoresis analysis. PLoS One. 2012;7(1):e22900.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Shi H, Trinh Q, Xu W, Zhai B, Luo Y, Huang K. A universal primer multiplex PCR method for typing of toxinogenic Pseudomonas aeruginosa. Appl Microbiol Biotechnol. 2012;95(6):1579–87.PubMedCrossRefGoogle Scholar
  39. 39.
    Machida M, Asai K, Sano M, Tanaka T, Kumagai T, Terai G, Kusumoto K-I, Arima T, Akita O, Kashiwagi Y. Genome sequencing and analysis of Aspergillus oryzae. Nature. 2005;438(7071):1157–61.PubMedCrossRefGoogle Scholar
  40. 40.
    Calistri A, Palù G. Unbiased next-generation sequencing and new pathogen discovery: undeniable advantages and still-existing drawbacks. Clin Infect Dis:ciu913. 2015.Google Scholar
  41. 41.
    Gill P, Ghaemi A. Nucleic acid isothermal amplification technologies—a review. Nucleosides Nucleotides Nucleic Acids. 2008;27(3):224–43.PubMedCrossRefGoogle Scholar
  42. 42.
    Simpkins S, Chan A, Hays J, Cook N. An RNA transcription-based amplification technique (NASBA) for the detection of viable Salmonella enterica. Lett Appl Microbiol. 2000;30(1):75–9.PubMedCrossRefGoogle Scholar
  43. 43.
    O’Grady J, Lacey K, Glynn B, Smith TJ, Barry T, Maher M. tmRNA–a novel high-copy-number RNA diagnostic target–its application for Staphylococcus aureus detection using real-time NASBA. FEMS Microbiol Lett. 2009;301(2):218–23.PubMedCrossRefGoogle Scholar
  44. 44.
    Fykse EM, Nilsen T, Nielsen AD, Tryland I, Delacroix S, Blatny JM. Real-time PCR and NASBA for rapid and sensitive detection of Vibrio cholerae in ballast water. Mar Pollut Bull. 2012;64(2):200–6.PubMedCrossRefGoogle Scholar
  45. 45.
    Walker GT, Fraiser MS, Schram JL, Little MC, Nadeau JG, Malinowski DP. Strand displacement amplification—an isothermal, in vitro DNA amplification technique. Nucleic Acids Res. 1992;20(7):1691–6.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Walker GT, Nadeau JG, Spears PA, Schram JL, Nycz CM, Shank DD. Multiplex strand displacement amplification (SDA) and detection of DNA sequences from Mycobacterium tuberculosis and other mycobacteria. Nucleic Acids Res. 1994;22(13):2670–7.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Detter JC, Jett JM, Lucas SM, Dalin E, Arellano AR, Wang M, Nelson JR, Chapman J, Lou Y, Rokhsar D. Isothermal strand-displacement amplification applications for high-throughput genomics. Genomics. 2002;80(6):691–8.PubMedCrossRefGoogle Scholar
  48. 48.
    Javaheri Tehrani S, Aliabadian M, Fata A, Najafzadeh MJ. Rolling circle amplification (RCA): an approach for quick detection and identification of fungal species. J Mycol Res. 2014;1(1):55–62.Google Scholar
  49. 49.
    Zhu D, Yan Y, Lei P, Shen B, Cheng W, Ju H, Ding S. A novel electrochemical sensing strategy for rapid and ultrasensitive detection of Salmonella by rolling circle amplification and DNA–AuNPs probe. Anal Chim Acta. 2014;846:44–50.PubMedCrossRefGoogle Scholar
  50. 50.
    Mori Y, Kanda H, Notomi T. Loop-mediated isothermal amplification (LAMP): recent progress in research and development. J Infect Chemother. 2013;19(3):404–11.PubMedCrossRefGoogle Scholar
  51. 51.
    Song T, Toma C, Nakasone N, Iwanaga M. Sensitive and rapid detection of Shigella and enteroinvasive Escherichia coli by a loop-mediated isothermal amplification method. FEMS Microbiol Lett. 2005;243(1):259–63.PubMedCrossRefGoogle Scholar
  52. 52.
    Wang L, Shi L, Alam M, Geng Y, Li L. Specific and rapid detection of foodborne Salmonella by loop-mediated isothermal amplification method. Food Res Int. 2008;41(1):69–74.CrossRefGoogle Scholar
  53. 53.
    Wang F, Jiang L, Ge B. Loop-mediated isothermal amplification assays for detecting Shiga toxin-producing Escherichia coli in ground beef and human stools. J Clin Microbiol. 2012;50(1):91–7.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Cheng N, Xu Y, Yan X, Shang Y, Zhu P, Tian W, Liang Z, Xu W. An advanced visual qualitative and Eva Green‐based quantitative isothermal amplification method to detect Listeria monocytogenes. J Food Saf. 2015.Google Scholar
  55. 55.
    Vincent M, Xu Y, Kong H. Helicase-dependent isothermal DNA amplification. EMBO Rep. 2004;5(8):795–800.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Gill P, Alvandi A-H, Abdul-Tehrani H, Sadeghizadeh M. Colorimetric detection of Helicobacter pylori DNA using isothermal helicase-dependent amplification and gold nanoparticle probes. Diagn Microbiol Infect Dis. 2008;62(2):119–24.PubMedCrossRefGoogle Scholar
  57. 57.
    Kong H, Higgins LS, Dalton MA, Kucera RB, Schildkraut I, Wilson GG. N. bstnbi nicking endonuclease and methods for using endonucleases in single-stranded displacement amplification. US Patent 20,030,211,506. 2003.Google Scholar
  58. 58.
    Giraffa G, Neviani E. DNA-based, culture-independent strategies for evaluating microbial communities in food-associated ecosystems. Int J Food Microbiol. 2001;67(1):19–34.PubMedCrossRefGoogle Scholar
  59. 59.
    Schütte UM, Abdo Z, Bent SJ, Shyu C, Williams CJ, Pierson JD, Forney LJ. Advances in the use of terminal restriction fragment length polymorphism (T-RFLP) analysis of 16S rRNA genes to characterize microbial communities. Appl Microbiol Biotechnol. 2008;80(3):365–80.PubMedCrossRefGoogle Scholar
  60. 60.
    Vaneechoutte M. DNA fingerprinting techniques for microorganisms. Mol Biotechnol. 1996;6(2):115–42.PubMedCrossRefGoogle Scholar
  61. 61.
    Muyzer G. DGGE/TGGE a method for identifying genes from natural ecosystems. Curr Opin Microbiol. 1999;2(3):317–22.PubMedCrossRefGoogle Scholar
  62. 62.
    Sanger F, Coulson AR. A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase. J Mol Biol. 1975;94(3):441–8.PubMedCrossRefGoogle Scholar
  63. 63.
    Claesson MJ, Wang Q, O’Sullivan O, Greene-Diniz R, Cole JR, Ross RP, O’Toole PW. Comparison of two next-generation sequencing technologies for resolving highly complex microbiota composition using tandem variable 16S rRNA gene regions. Nucleic Acids Res. 2010;38(22):e200.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Bej AK, Ng W-Y, Morgan S, Jones DD, Mahbubani MH. Detection of viable Vibrio cholerae by reverse-transcriptase polymerase chain reaction (RT-PCR). Mol Biotechnol. 1996;5(1):1–10.PubMedCrossRefGoogle Scholar
  65. 65.
    Sheridan G, Masters C, Shallcross J, Mackey B. Detection of mRNA by reverse transcription-PCR as an indicator of viability in Escherichia coli cells. Appl Environ Microbiol. 1998;64(4):1313–8.PubMedPubMedCentralGoogle Scholar
  66. 66.
    Gedalanga PB, Olson BH. Development of a quantitative PCR method to differentiate between viable and nonviable bacteria in environmental water samples. Appl Microbiol Biotechnol. 2009;82(3):587–96.PubMedCrossRefGoogle Scholar
  67. 67.
    Shi H, Xu W, Luo Y, Chen L, Liang Z, Zhou X, Huang K. The effect of various environmental factors on the ethidium monazite and quantitative PCR method to detect viable bacteria. J Appl Microbiol. 2011;111(5):1194–204.PubMedCrossRefGoogle Scholar
  68. 68.
    Wang L, Zhong Q, Liao Z. Specific detection of Vibrio parahaemolyticus in viable but non-culturable state by EMA-LAMP technique. Food Eng Biotechnol. 2013;50(34):169–73.Google Scholar
  69. 69.
    Wu GP, Chen SH, Levin RE. Application of ethidium bromide monoazide for quantification of viable and dead cells of Salmonella enterica by real-time loop-mediated isothermal amplification. J Microbiol Methods. 2015;117:41–8.PubMedCrossRefGoogle Scholar
  70. 70.
    Nocker A, Cheung C-Y, Camper AK. Comparison of propidium monoazide with ethidium monoazide for differentiation of live vs. dead bacteria by selective removal of DNA from dead cells. J Microbiol Methods. 2006;67(2):310–20.PubMedCrossRefGoogle Scholar
  71. 71.
    Vesper S, Mckinstry C, Hartmann C, Neace M, Yoder S, Vesper A. Quantifying fungal viability in air and water samples using quantitative PCR after treatment with propidium monoazide (PMA). J Microbiol Methods. 2008;72(2):180–4.PubMedCrossRefGoogle Scholar
  72. 72.
    Lee J-L, Levin RE. A comparative study of the ability of EMA and PMA to distinguish viable from heat killed mixed bacterial flora from fish fillets. J Microbiol Methods. 2009;76(1):93–6.PubMedCrossRefGoogle Scholar
  73. 73.
    Forghani F, Langaee T, Eskandari M, Seo K-H, Chung M-J, Oh D-H. Rapid detection of viable Bacillus cereus emetic and enterotoxic strains in food by coupling propidium monoazide and multiplex PCR (PMA-mPCR). Food Control. 2015;55:151–7.CrossRefGoogle Scholar
  74. 74.
    Nocker A, Richter-Heitmann T, Montijn R, Schuren F, Kort R. Discrimination between live and dead cells in bacterial communities from environmental water samples analyzed by 454 pyrosequencing. Int Microbiol. 2010;13(2):59–65.PubMedGoogle Scholar
  75. 75.
    Elizaquível P, Aznar R, Sánchez G. Recent developments in the use of viability dyes and quantitative PCR in the food microbiology field. J Appl Microbiol. 2014;116(1):1–13.PubMedCrossRefGoogle Scholar
  76. 76.
    Codony F, Agustí G, Allué-Guardia A. Cell membrane integrity and distinguishing between metabolically active and inactive cells as a means of improving viability PCR. Mol Cell Probes. 2015;29(3):190–2.PubMedCrossRefGoogle Scholar
  77. 77.
    Nogva HK, Bergh A, Holck A, Rudi K. Application of the 5′-nuclease PCR assay in evaluation and development of methods for quantitative detection of Campylobacter jejuni. Appl Environ Microbiol. 2000;66(9):4029–36.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Nogva HK, Dromtorp S, Nissen H, Rudi K. Ethidium monoazide for DNA-based differentiation of viable and dead bacteria by 5′-nuclease PCR. Biotechniques. 2003;34(4):804–13.PubMedGoogle Scholar
  79. 79.
    Villarreal JV, Jungfer C, Obst U, Schwartz T. DNase I and proteinase K eliminate DNA from injured or dead bacteria but not from living bacteria in microbial reference systems and natural drinking water biofilms for subsequent molecular biology analyses. J Microbiol Methods. 2013;94(3):161–9.PubMedCrossRefGoogle Scholar
  80. 80.
    Schaus SS, Henderson ER. Cell viability and probe-cell membrane interactions of XR1 glial cells imaged by atomic force microscopy. Biophys J. 1997;73(3):1205.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Cerf A, Cau J-C, Vieu C, Dague E. Nanomechanical properties of dead or alive single-patterned bacteria. Langmuir. 2009;25(10):5731–6.PubMedCrossRefGoogle Scholar
  82. 82.
    Notingher I, Jones J, Verrier S, Bisson I, Embanga P, Edwards P, Polak J, Hench L. Application of FTIR and Raman spectroscopy to characterisation of bioactive materials and living cells. J Spectrosc. 2003;17(2–3):275–88.CrossRefGoogle Scholar
  83. 83.
    Zhou H, Yang D, Ivleva NP, Mircescu NE, Schubert S, Niessner R, Wieser A, Haisch C. Label-free in situ discrimination of live and dead bacteria by surface-enhanced Raman scattering. Anal Chem. 2015;87(13):6553–61.PubMedCrossRefGoogle Scholar
  84. 84.
    Sivakumar P, Fernández-Bravo A, Taleh L, Biddle J, Melikechi N. Detection and classification of live and dead Escherichia coli by laser-induced breakdown spectroscopy. Astrobiology. 2015;15(2):144–53.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Markx GH, Talary MS, Pethig R. Separation of viable and non-viable yeast using dielectrophoresis. J Biotechnol. 1994;32(1):29–37.PubMedCrossRefGoogle Scholar
  86. 86.
    Doh I, Cho Y-H. A continuous cell separation chip using hydrodynamic dielectrophoresis (DEP) process. Sensors Actuators A Phys. 2005;121(1):59–65.CrossRefGoogle Scholar
  87. 87.
    Lapizco-Encinas BH, Simmons BA, Cummings EB, Fintschenko Y. Dielectrophoretic concentration and separation of live and dead bacteria in an array of insulators. Anal Chem. 2004;76(6):1571–9.PubMedCrossRefGoogle Scholar
  88. 88.
    Jen C-P, Chen T-W. Selective trapping of live and dead mammalian cells using insulator-based dielectrophoresis within open-top microstructures. Biomed Microdevices. 2009;11(3):597–607.PubMedCrossRefGoogle Scholar
  89. 89.
    Shafiee H, Sano MB, Henslee EA, Caldwell JL, Davalos RV. Selective isolation of live/dead cells using contactless dielectrophoresis (cDEP). Lab Chip. 2010;10(4):438–45.PubMedCrossRefGoogle Scholar
  90. 90.
    Patel S, Showers D, Vedantam P, Tzeng T-R, Qian S, Xuan X. Microfluidic separation of live and dead yeast cells using reservoir-based dielectrophoresis. Biomicrofluidics. 2012;6(3):034102.PubMedCentralCrossRefGoogle Scholar
  91. 91.
    Czechowska K, Johnson DR, van der Meer JR. Use of flow cytometric methods for single-cell analysis in environmental microbiology. Curr Opin Microbiol. 2008;11(3):205–12.PubMedCrossRefGoogle Scholar
  92. 92.
    Amor KB, Breeuwer P, Verbaarschot P, Rombouts FM, Akkermans AD, De Vos WM, Abee T. Multiparametric flow cytometry and cell sorting for the assessment of viable, injured, and dead Bifidobacterium cells during bile salt stress. Appl Environ Microbiol. 2002;68(11):5209–16.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Berney M, Hammes F, Bosshard F, Weilenmann H-U, Egli T. Assessment and interpretation of bacterial viability by using the LIVE/DEAD BacLight Kit in combination with flow cytometry. Appl Environ Microbiol. 2007;73(10):3283–90.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Yang X, Kirsch J, Simonian A. Campylobacter spp. detection in the 21st century: a review of the recent achievements in biosensor development. J Microbiol Methods. 2013;95(1):48–56.PubMedCrossRefGoogle Scholar
  95. 95.
    Baeumner AJ, Cohen RN, Miksic V, Min J. RNA biosensor for the rapid detection of viable Escherichia coli in drinking water. Biosens Bioelectron. 2003;18(4):405–13.PubMedCrossRefGoogle Scholar
  96. 96.
    Varshney M, Li Y. Double interdigitated array microelectrode-based impedance biosensor for detection of viable Escherichia coli O157: H7 in growth medium. Talanta. 2008;74(4):518–25.PubMedCrossRefGoogle Scholar
  97. 97.
    Chang W-H, Wang C-H, Lin C-L, Wu J-J, Lee MS, Lee G-B. Rapid detection and typing of live bacteria from human joint fluid samples by utilizing an integrated microfluidic system. Biosens Bioelectron. 2015;66:148–54.PubMedCrossRefGoogle Scholar
  98. 98.
    Ngom B, Guo Y, Wang X, Bi D. Development and application of lateral flow test strip technology for detection of infectious agents and chemical contaminants: a review. Anal Bioanal Chem. 2010;397(3):1113–35.PubMedCrossRefGoogle Scholar
  99. 99.
    Urata M, Iwata R, Noda K, Murakami Y, Kuroda A. Detection of living Salmonella cells using bioluminescence. Biotechnol Lett. 2009;31(5):737–41.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Singapore 2016

Authors and Affiliations

  • Wentao Xu
    • 1
    • 2
  1. 1.Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional EngineeringChina Agricultural UniversityBeijingChina
  2. 2.Beijing Laboratory for Food Quality and Safety, College of Food Science & Nutritional EngineeringChina Agricultural UniversityBeijingChina

Personalised recommendations