Advertisement

Aptamers and Their Application

  • Wentao Xu
Chapter

Abstract

Aptamers are oligonucleotides (single-strand RNA or DNA) with three-dimensional shapes that can bind to their target with conformational changes. Recently, aptamers have attracted increased attention in analysis because they have all the advantages of antibodies, as well as unique merits, such as thermal stability, small size, reversible binding, low cost, and easy signal transduction. In this chapter, several types of aptamer selection processes, which can be categorized into two groups (SELEX (systematic evolution of ligands by exponential enrichment) strategies and SELEX variant strategies), are explained in detail. Furthermore, we briefly review various applications of aptamers for the diagnosis of diseases, drug release, antimicrobial activity, bioanalysis, and serotyping.

Keywords

Aptamer SELEX Diagnosis Antimicrobial activity Bioanalysis Serotyping 

Notes

Acknowledgments

This work is supported by the Ministry of Science and Technology of Beijing (XX2014B069). Many thanks to Longjiao Zhu, for her kindly help in manuscript conception and preparation.

References

  1. 1.
    Jayasena SD. Aptamers: an emerging class of molecules that rival antibodies in diagnostics. Clin Chem. 1999;45(9):1628–50.PubMedGoogle Scholar
  2. 2.
    O’Sullivan CK. Aptasensors–the future of biosensing? Anal Bioanal Chem. 2002;372(1):44–8.CrossRefPubMedGoogle Scholar
  3. 3.
    Ellington AD, Szostak JW. In vitro selection of RNA molecules that bind specific ligands. Nature. 1990;346(6287):818–22.CrossRefPubMedGoogle Scholar
  4. 4.
    Lee JF, Stovall GM, Ellington AD. Aptamer therapeutics advance. Curr Opin Chem Biol. 2006;10(3):282–9.CrossRefPubMedGoogle Scholar
  5. 5.
    Ng EW, Shima DT, Calias P, Cunningham ET, Guyer DR, Adamis AP. Pegaptanib, a targeted anti-VEGF aptamer for ocular vascular disease. Nat Rev Drug Discov. 2006;5(2):123–32.CrossRefPubMedGoogle Scholar
  6. 6.
    Ulrich H, Magdesian MH, Alves MJM, Colli W. In vitro selection of RNA aptamers that bind to cell adhesion receptors of Trypanosoma cruzi and inhibit cell invasion. J Biol Chem. 2002;277(23):20756–62.CrossRefPubMedGoogle Scholar
  7. 7.
    Bagalkot V, Zhang L, Levy-Nissenbaum E, Jon S, Kantoff PW, Langer R, Farokhzad OC. Quantum dot-aptamer conjugates for synchronous cancer imaging, therapy, and sensing of drug delivery based on bi-fluorescence resonance energy transfer. Nano Lett. 2007;7(10):3065–70.CrossRefPubMedGoogle Scholar
  8. 8.
    Tang Z, Shangguan D, Wang K, Shi H, Sefah K, Mallikratchy P, Chen HW, Li Y, Tan W. Selection of aptamers for molecular recognition and characterization of cancer cells. Anal Chem. 2007;79(13):4900–7.CrossRefPubMedGoogle Scholar
  9. 9.
    Shangguan D, Li Y, Tang Z, Cao ZC, Chen HW, Mallikaratchy P, Sefah K, Yang CJ, Tan W. Aptamers evolved from live cells as effective molecular probes for cancer study. Proc Natl Acad Sci. 2006;103(32):11838–43.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Blank M, Weinschenk T, Priemer M, Schluesener H. Systematic evolution of a DNA aptamer binding to rat brain tumor microvessels selective targeting of endothelial regulatory protein pigpen. J Biol Chem. 2001;276(19):16464–8.CrossRefPubMedGoogle Scholar
  11. 11.
    Stoltenburg R, Reinemann C, Strehlitz B. SELEX—a (r) evolutionary method to generate high-affinity nucleic acid ligands. Biomol Eng. 2007;24(4):381–403.CrossRefPubMedGoogle Scholar
  12. 12.
    Wilson DS, Szostak JW. In vitro selection of functional nucleic acids. Annu Rev Biochem. 1999;68(1):611–47.CrossRefPubMedGoogle Scholar
  13. 13.
    Mann D, Reinemann C, Stoltenburg R, Strehlitz B. In vitro selection of DNA aptamers binding ethanolamine. Biochem Biophys Res Commun. 2005;338(4):1928–34.CrossRefPubMedGoogle Scholar
  14. 14.
    Wang C, Zhang M, Yang G, Zhang D, Ding H, Wang H, Fan M, Shen B, Shao N. Single-stranded DNA aptamers that bind differentiated but not parental cells: subtractive systematic evolution of ligands by exponential enrichment. J Biotechnol. 2003;102(1):15–22.CrossRefPubMedGoogle Scholar
  15. 15.
    Ducongé F, Toulmé J-J. In vitro selection identifies key determinants for loop–loop interactions: RNA aptamers selective for the TAR RNA element of HIV-1. RNA. 1999;5(12):1605–14.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Toulmé J-J, Darfeuille F, Kolb G, Chabas S, Staedel C. Modulating viral gene expression by aptamers to RNA structures. Biol Cell. 2003;95(3):229–38.CrossRefPubMedGoogle Scholar
  17. 17.
    Wilson C, Nix J, Szostak J. Functional requirements for specific ligand recognition by a biotin-binding RNA pseudoknot. Biochemistry. 1998;37(41):14410–9.CrossRefPubMedGoogle Scholar
  18. 18.
    Rimmele M. Nucleic acid aptamers as tools and drugs: recent developments. ChemBioChem. 2003;4(10):963–71.CrossRefPubMedGoogle Scholar
  19. 19.
    Zhu Z, Song Y, Li C, Zou Y, Zhu L, An Y, Yang CJ. Monoclonal surface display SELEX for simple, rapid, efficient, and cost-effective aptamer enrichment and identification. Anal Chem. 2014;86(12):5881–8.CrossRefPubMedGoogle Scholar
  20. 20.
    Mayer G, Ahmed M-SL, Dolf A, Endl E, Knolle PA, Famulok M. Fluorescence-activated cell sorting for aptamer SELEX with cell mixtures. Nat Protoc. 2010;5(12):1993–2004.CrossRefPubMedGoogle Scholar
  21. 21.
    Mendonsa SD, Bowser MT. In vitro evolution of functional DNA using capillary electrophoresis. J Am Chem Soc. 2004;126(1):20–1.CrossRefPubMedGoogle Scholar
  22. 22.
    Berezovski M, Drabovich A, Krylova SM, Musheev M, Okhonin V, Petrov A, Krylov SN. Nonequilibrium capillary electrophoresis of equilibrium mixtures: a universal tool for development of aptamers. J Am Chem Soc. 2005;127(9):3165–71.CrossRefPubMedGoogle Scholar
  23. 23.
    Qian J, Lou X, Zhang Y, Xiao Y, Soh HT. Generation of highly specific aptamers via micromagnetic selection. Anal Chem. 2009;81(13):5490–5.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Cho M, Xiao Y, Nie J, Stewart R, Csordas AT, Oh SS, Thomson JA, Soh HT. Quantitative selection of DNA aptamers through microfluidic selection and high-throughput sequencing. Proc Natl Acad Sci. 2010;107(35):15373–8.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Daniels DA, Chen H, Hicke BJ, Swiderek KM, Gold L. A tenascin-C aptamer identified by tumor cell SELEX: systematic evolution of ligands by exponential enrichment. Proc Natl Acad Sci. 2003;100(26):15416–21.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Hamula CL, Guthrie JW, Zhang H, Li X-F, Le XC. Selection and analytical applications of aptamers. TrAC Trends Anal Chem. 2006;25(7):681–91.CrossRefGoogle Scholar
  27. 27.
    Morris KN, Jensen KB, Julin CM, Weil M, Gold L. High affinity ligands from in vitro selection: complex targets. Proc Natl Acad Sci. 1998;95(6):2902–7.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Fitter S, James R. Deconvolution of a complex target using DNA aptamers. J Biol Chem. 2005;280(40):34193–201.CrossRefPubMedGoogle Scholar
  29. 29.
    Torres-Chavolla E, Alocilja EC. Aptasensors for detection of microbial and viral pathogens. Biosens Bioelectron. 2009;24(11):3175–82.CrossRefPubMedGoogle Scholar
  30. 30.
    Berezovski M, Musheev M, Drabovich A, Krylov SN. Non-SELEX selection of aptamers. J Am Chem Soc. 2006;128(5):1410–1.CrossRefPubMedGoogle Scholar
  31. 31.
    White R, Rusconi C, Scardino E, Wolberg A, Lawson J, Hoffman M, Sullenger B. Generation of species cross-reactive aptamers using “toggle” SELEX. Mol Ther. 2001;4(6):567–74.CrossRefPubMedGoogle Scholar
  32. 32.
    Johnson L, Gershon PD. RNA binding characteristics and overall topology of the vaccinia poly (A) polymerase-processivity factor-primer complex. Nucleic Acids Res. 1999;27(13):2708–21.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Shamah SM, Healy JM, Cload ST. Complex target SELEX. Acc Chem Res. 2008;41(1):130–8.CrossRefPubMedGoogle Scholar
  34. 34.
    Kolovskaya OS, Savitskaya AG, Zamay TN, Reshetneva IT, Zamay GS, Erkaev EN, Wang X, Wehbe M, Salmina AB, Perianova OV. Development of bacteriostatic DNA aptamers for salmonella. J Med Chem. 2013;56(4):1564–72.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Singapore 2016

Authors and Affiliations

  • Wentao Xu
    • 1
    • 2
  1. 1.Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional EngineeringChina Agricultural UniversityBeijingChina
  2. 2.Beijing Laboratory for Food Quality and Safety, College of Food Science & Nutritional EngineeringChina Agricultural UniversityBeijingChina

Personalised recommendations