Skip to main content

Rare Earth Solar Spectral Convertor for Si Solar Cells

  • Chapter
  • First Online:

Abstract

The goal of current energy policy worldwide is to develop clean renewable energy capable of powering the world household and economy, now and in the future. Photovoltaics (PV) is an advanced technique that can directly convert clear and sustainable solar energy into electricity, which makes it a promising candidate for achieving this goal. Currently, PV devices fabricated from silicon (Si) wafers dominate the marketplace. Unfortunately, current silicon-based PV products are expensive and suffer poor efficiency when converting solar energy to electricity. The mismatch between the solar photon flux spectrum and the spectral response of Si solar cells is one of the main drawbacks greatly limiting the power energy efficiency of Si solar cell. In recent years, rare earth-activated luminescent materials, which are capable of converting lights of higher energy into near-infrared (NIR) photons of lower energy by means of downshifting (DS) and downconverting (DC), have been designed and systematically investigated with aim to minimize the charge thermalization of Si solar cell in the process of photoelectric conversion. In this review, we will survey recent progress in the development of such kinds of rare earth solar spectral converters for Si solar cells as well as rare earth-converted Si solar cells (REC-Si solar cells). In addition, future challenges of these rare earth solar spectral converters will be briefly discussed toward REC-Si solar cells.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Richards BS (2006) Enhancing the performance of silicon solar cells via the application of passive luminescence conversion layers. Sol Energ Mat Sol C 90: 2329.

    Google Scholar 

  2. Gratzel M (2007) Photovoltaic and photoelectrochemical conversion of solar energy. Philos T Roy Soc A 365: 993.

    Google Scholar 

  3. Trupke T, Green MA, Wurfel P (2002) Improving solar cell efficiencies by downconversion of high-energy photons. J Appl Phys 92: 1668.

    Google Scholar 

  4. Huang XY, Han SY, Huang W, Liu XG (2013) Enhancing solar cell efficiency: the search for luminescent materials as spectral converters. Chem Soc Rev 42: 173.

    Google Scholar 

  5. Shockley W, Queisser HJ (1961) Detailed Balance Limit of Efficiency of P-N Junction Solar Cells. J Appl Phys 32: 510.

    Google Scholar 

  6. Zhang QY, Huang XY (2010) Recent progress in quantum cutting phosphors. Prog Mater Sci 55: 353.

    Google Scholar 

  7. Chen DQ, Wang YS, Hong MC (2012) Lanthanide nanomaterials with photon management characteristics for photovoltaic application. Nano Energy 1: 73.

    Google Scholar 

  8. Boulon G (2008) Why so deep research on Yb3+-doped optical inorganic materials? J Alloy Compd 451: 1.

    Google Scholar 

  9. Vergeer P, Vlugt TJH, Kox MHF, den Hertog MI, van der Eerden JPJM, Meijerink A (2005)Quantum cutting by cooperative energy transfer in YbxY1−xPO4:Tb3+. Phys Rev B: Condens Matter 71: 014119.

    Google Scholar 

  10. Zhang QY, Yang CH, Jiang ZH, Ji XH (2007) Concentration-dependent near-infrared quantum cutting in GdBO3:Tb,Yb nanophosphors. Appl Phys Lett 90: 061914.

    Google Scholar 

  11. Huang XY, Zhang QY (2009) Efficient near-infrared down conversion in Zn2SiO4:Tb,Yb thin-films J Appl Phys 105: 053521.

    Google Scholar 

  12. Zhang QY, Yang GF, Jiang ZH (2007) Cooperative downconversion in GdAl3(BO3)4:RE, Yb (RE=Pr, Tb, and Tm) Appl Phys Lett 91: 051903.

    Google Scholar 

  13. Ye S, Zhu B, Luo J, Chen JX, Lakshminarayana G, Qiu JR (2008) Enhanced cooperative quantum cutting in Tm3+-Yb3+codoped glass ceramics containing LaF3 nanocrystals. Opt Express 16: 8989.

    Google Scholar 

  14. Chen XP, Huang XY, Zhang QY (2009) Concentration-dependent Pr3+-Yb3+ down conversion phosphor. J App Phys 106: 063518.

    Google Scholar 

  15. van der Ende BM, Aarts L, Meijerink A (2009) Near-Infrared Quantum Cutting for Photovoltaics. Adv Mater 21: 1.

    Google Scholar 

  16. Dieke GH (1968) Spectra and Energy Levels of Rare Earth Ions in Crystals, Interscience. New York 142.

    Google Scholar 

  17. Wegh RT, Meijerink A, Lamminma RJ, Hölsä J (2000) Extending Dieke’s diagram. J Lumin 87-89: 1002.

    Google Scholar 

  18. Denham P, Field GR, Morse PLR, Wilkinson GR (1970) Optical and Dielectric Properties and Lattice Dynamics of Some Fluorite Structure Ionic Crystals. Proc R Soc London A 317: 55.

    Google Scholar 

  19. Zheng W, Zhu H, Li R, Tu D, Liu Y, Luo W, Chen X (2012) Visible-to-infrared quantum cutting by phonon-assisted energy transfer in YPO4:Tm3+,Yb3+ phosphors. Phys ChemChem Phys 14: 6974.

    Google Scholar 

  20. Aarts L, van der Ende BM, Meijerink A (2009) Downconversion for solar cells in NaYF4:Er,Yb. J Appl Phys 106: 023522.

    Google Scholar 

  21. Eilers JJ, Biner D, van Wijngaarden JT, Kraemer K, Guedel HU Meijerink A (2010) Efficient visible to infrared quantum cutting through downconversion with the Er3+–Yb3+ couple in Cs3Y2Br9. Appl Phys Lett 96: 151106.

    Google Scholar 

  22. Meijer JM, Aarts, van der Ende BM, Vlugt TJH, Meijerink A. (2010) Downconversion for solar cells in YF3:Nd3+, Yb3+. Phys Rev B: Condens Matter 81: 035107.

    Google Scholar 

  23. Lin H, Chen D, Yu Y, Yang A, Wang Y (2011)Near-infrared quantum cutting in Ho3+/Yb3+ codoped nanostructured glass ceramic. Opt Lett 36: 876.

    Google Scholar 

  24. Yu DC, Huang XY, Ye S, Zhang QY (2011) Efficient first-order resonant near-infrared quantum cutting in β-NaYF4:Ho3+,Yb3+. J Alloys Compd 509: 9919.

    Google Scholar 

  25. Deng K, Gong T, Hu L, Wei X, Chen Y, Yin M (2011) Efficient near-infrared quantum cutting by resonance energy transfer in NaYF4:Ho3+, Yb3+. Opt Express 19: 1749.

    Google Scholar 

  26. Bai Z, Fujii M, Hasegawa T, Imakita K, Mizuhata M, Hayashi S (2011) Efficient ultraviolet-blue to near-infrared downconversion in Bi–Dy–Yb-doped zeolites. J Phys D: Appl Phys 44: 455301.

    Google Scholar 

  27. Jørgensen CK (1970) Electron transfer spectra. Prog Inorg Chem 12: 101.

    Google Scholar 

  28. Bae JS, Park JC, Park JM, Seo HJ, Choi BC, Jeong JH, Kim YS, Yi SS (2004) Morphology-dependent luminescence behavior of Y2-xGdxO3:Eu3+ thin-film phosphors grown by a laser ablation. Appl Phys A-Mater 78: 877.

    Google Scholar 

  29. Wang EY, Zhou WL, Liu CM, Wang J, Kuang XJ, Ye YM, Tang JK, Su Q (2014) Yb3+ site occupation and host sensitization luminescence of a novel near-infrared emitting Sr2CaMoO6:Yb3+ phosphor, Phys Status Solidi-R 8: 202.

    Google Scholar 

  30. Zhang GG, Liu CM, Wang J, Kuang XJ, Su Q (2011) An intense charge transfer broadband sensitized near-infrared emitting CaLaGa3S6O:Yb3+ phosphor suitable for solar spectral convertor. Opt Express 19: 24314.

    Google Scholar 

  31. Wei X, Huang S, Chen Y, Guo C, Yin M, Xu W (2010) Energy transfer mechanisms in Yb3+ doped YVO4 near-infrared downconversion phosphor. J Appl Phys 107: 103107.

    Google Scholar 

  32. Peng Y, Liu J, Zhang K, Luo H, Li J, Xu B, Han L, Li X, Yu X (2011) Near-infrared luminescent and antireflective in SiO2/YVO4:Yb3+ bilayer films for c-Si solar cells. Appl Phys Lett 99:121110.

    Google Scholar 

  33. Cheng X, Su L, Wang Y, Zhu X, Wei X, Wang Y (2012) Near-infrared quantum cutting in YVO4:Yb3+ thin-films via downconversion. Opt Mater 34: 1102.

    Google Scholar 

  34. Sablayrolles J, Jubera V, Guillen F, Garcia A (2008) Charge transfer emission of ytterbium-doped oxyborates. Spectrochim Acta A Mol Biomol Spectrosc 69: 1010.

    Google Scholar 

  35. van Pieterson L, Heeroma M, de Heer E, Meijerink A (2000) Charge transfer luminescence of Yb3+. J Lumin 91: 177.

    Google Scholar 

  36. Yu RJ, Wang J, Zhang M, Zhang JH, Yuan HB, Su Q (2008) A new blue-emitting phosphor of Ce3+-activated CaLaGa3S6O for white-light-emitting diodes. Chem Phys Lett 453: 197.

    Google Scholar 

  37. Teske CL (1985) ÜberoxidsulfidemitÅkermanitstruktur CaLaGa3S6O, SrLaGa3S6O, La2ZnGa2S6O and Sr2ZnGe2S6O,” Z AnorgAllgChem 531: 52.

    Google Scholar 

  38. Sablayrolles J. Jubera V, Guillen F, Garcia A (2008) Charge transfer emission of ytterbium-doped oxyborates. Spectrochim. Acta A Mol BiomolSpectrosc 69:1010.

    Google Scholar 

  39. Zhang QH, Wang J, Zhang GG, Su Q (2009) UV photon harvesting and enhanced near-infrared emission in novel quantum cutting Ca2BO3Cl:Ce3+, Tb3+, Yb3+ phosphor. J Mater Chem 19: 7088.

    Google Scholar 

  40. De Mello Donega C, Meijerink A, Blasse G (1995) Nonradiative Relaxation Processes of the Pr3+ Ion in Solids. J Phys Chem Solids 56: 673.

    Google Scholar 

  41. Li Y, Wang J, Zhou WL, Zhang GG, Chen Y, Su Q (2013) UV-Vis-NIR luminescence properties and energy transfer mechanism of a novel 5d broadband sensitized Sr3SiO5:Ce3+,Yb3+ suitable for solar spectral convertor. Appl Phys Express 6: 082301.

    Google Scholar 

  42. Ye S, Wang CH, Jing XP (2008) Photoluminescence and Raman Spectra of Double-Perovskite Sr2Ca(Mo/W)O6 with A- and B-Site Substitutions of Eu3+. J Electrochem Soc 155: 148.

    Google Scholar 

  43. Ye S, Wang CH, Liu ZS, Lu J, Jing XP (2008) Photoluminescence and energy transfer of phosphor series Ba2-zSrzCaMo1-yWyO6:Eu, Li for white light UVLED applications. Appl Phys B 91:551.

    Google Scholar 

  44. Sivakumar V, Varadaraju UV (2006)A Promising Orange-Red Phosphor Under Near UV Excitation. Electrochem Solid-State Lett 9: 35.

    Google Scholar 

  45. Auzel F, Goldner P (2001) Towards rare-earth clustering control in doped glasses. Opt Mater 16: 93.

    Google Scholar 

  46. Lai B, Wang J, Su Q (2010)Ultraviolet and visible upconversion emission in Tb3+/Yb3+ co-doped fluorophosphate glasses. Appl Phys B 98: 41.

    Google Scholar 

  47. Deng ZP, Kang W, Huo LH, Zhao H, Gao S (2010) Rare-earth organic frameworks involving three types of architecture tuned by the lanthanide contraction effect: hydrothermal syntheses, structures and luminescence. Dalton Trans 39: 6276.

    Google Scholar 

  48. Legendziewicz J, Guzik M, Szuszkiewicz W (2008)Charge transfer and f–f emission of trivalent ytterbium observed in double phosphates MIMIII(PO4)2 (MI=Na, Rb; MIII=Lu, Y). J Alloys Compd 451: 165.

    Google Scholar 

  49. Ye S, Li Y, Yu D, Yang Z, Zhang Q (2011)Structural effects on Stokes and anti-Stokes luminescence of double-perovskite (Ba,Sr)2CaMoO6: Yb3+,Eu3+. J Appl Phys 110: 013517.

    Google Scholar 

  50. Peng MY, Wondraczek L (2009) Bismuth-doped oxide glasses as potential so-lar spectral converters and concentrators. J Mater Chem 19: 627.

    Google Scholar 

  51. Wang DM, Tie SL, Wan X (2015) White light emitting from YVO4/Y2O3:Eu3+, Bi3+ composite phosphors for UV light-emitting diodes. Ceram Int 41: 7766.

    Google Scholar 

  52. Huang XY, Zhang QY (2010) Near-Infrared Quantum Cutting via Cooperative Energy Transfer in Gd2O3:Bi3+, Yb3+ Phosphors. J Appl Phys 107: 063505.

    Google Scholar 

  53. Dorenbos P (2003) f→d transition energies of divalent lanthanides in inorganic compounds. J Phys: Condens Matter 15:575.

    Google Scholar 

  54. Huang XY, Yu DC, Zhang QY (2009) Enhanced Near-Infrared Quantum Cutting in GdBO3:Tb3+,Yb3+ Phosphors by Ce3+ Codoping. J Appl Phys 106: 113521.

    Google Scholar 

  55. Zhou JJ, Teng Y, Ye S, Zhuang YX, Qiu JR (2010)Enhanced downconversion luminescence by co-doping Ce3+ in Tb3+–Yb3+ doped borate glasses. Chem Phys Lett 486: 116.

    Google Scholar 

  56. Liu TC, Zhang GG, Qiao XB, Wang J, Seo HJ, Tsai DP, Liu RS (2013) Near-Infrared Quantum Cutting Platform in Thermally Stable Phosphate Phosphors for Solar Cells. InorgChem 52: 7352.

    Google Scholar 

  57. Chen D, Wang Y, Yu Y, Huang P, Weng F (2008) Quantum cutting downconversion by cooperative energy transfer from Ce3+ to Yb3+ in borate glasses. J Appl Phys 104: 116105.

    Google Scholar 

  58. Chen J, Guo H, Li Z, Zhang H, Zhuang Y (2010) Near-infrared quantum cutting in Ce3+,Yb3+ co-doped YBO3 phosphors by cooperative energy transfer. Opt Mater 32: 998.

    Google Scholar 

  59. Chen J, Zhang H, Li F, H. Guo (2011) High efficient near-infrared quantum cutting in Ce3+, Yb3+ co-doped LuBO3 phosphors. Mater Chem Phys 128: 191.

    Google Scholar 

  60. Liu X, Teng Y, Zhuang Y, Xie J, Qiao Y, Dong G, Chen D, Qiu J (2009) Broadband conversion of visible light to near-infrared emission by Ce3+, Yb3+-codoped yttrium aluminum garnet. Opt Lett 34: 3565.

    Google Scholar 

  61. Lin H, Zhou SM, Teng H, Li YK, Li WJ, Hou XR, Jia TT (2010) Near infrared quantum cutting in heavy Yb doped transparent ceramics for crystalline silicon solar cells. J Appl Phys 107: 043107.

    Google Scholar 

  62. Zhou WL, Li Y, Zhang RH, Wang J, Zou R, Liang HB (2012) Ultraviolet to near-infrared downconversion of Y2SiO5:Ce3+, Yb3+nanobelt-poly-EVA films. Opt Lett 37: 4437.

    Google Scholar 

  63. Zhou WL, Yang J, Wang J, Li Y, Kuang XJ, Tang JK, Liang HB (2012) Study on the effects of 5d energy locations of Ce3+ ions on NIR quantum cutting process in Y2SiO5:Ce3+, Yb3+. Opt Express 20: 510.

    Google Scholar 

  64. Ueda J, Tanabe S (2009) Visible to near infrared conversion in Ce3+-Yb3+ Co-doped YAG ceramics. J Appl Phys 106: 043101.65.

    Google Scholar 

  65. Zhou J, Zhuang Y, Ye S, Teng Y, Lin G, Zhu B, Xie J, Qiu J (2009) Broadband downconversion based infrared quantum cutting by cooperative energy transfer from Eu2+ to Yb3+ in glasses. Appl Phys Lett 95: 141101.

    Google Scholar 

  66. Zhou J, Teng Y, Lin G, Xu X, Ma Z, Qiu J (2010) Broad-Band Excited Quantum Cutting in Eu2+–Yb3+ Co-doped Aluminosilicate Glasses. J Electrochem Soc 157: 1146.

    Google Scholar 

  67. Teng Y, Zhou J, Ye S, Qiu J (2010)Broadband Near-Infrared Quantum Cutting in Eu2+ and Yb3+ Ions Co-doped CaAl2O4 Phosphor. J Electrochem Soc 157: 1073.

    Google Scholar 

  68. Lin H, Chen D, Yu Y, Shan Z, Huang P, Yang A, Wang Y (2011)Broadband UV excitable near-infrared downconversion luminescence in Eu2+/Yb3+:CaF2 nanocrystals embedded glass ceramics. J Alloys Compd 509: 3363.

    Google Scholar 

  69. Smedskjaer MM, Qiu J, Wang J, Yue Y (2011)Near-infrared emission from Eu–Yb doped silicate glasses subjected to thermal reduction. Appl Phys Lett 98: 071911.

    Google Scholar 

  70. Teng Y, Zhou J, Liu X, Ye S, Qiu J (2010)Efficient broadband near-infrared quantum cutting for solar cells. Opt Express 18: 9671.

    Google Scholar 

  71. Zhang GG, Liu CM, Wang J, Kuang XJ, Su Q (2012) A dual-mode solar spectral converter CaLaGa3S6O:Ce3+,Pr3+: UV-Vis-NIR luminescence properties and solar spectral converting mechanism. J Mater Chem 22: 2226.

    Google Scholar 

  72. Moune OK, Faucher MD, Edelstein N (2002)Spectroscopic investigations and configuration-interaction-assisted crystal field analysis of Pr3+ in YPO4 single crystal. J Lumin 96: 51.

    Google Scholar 

  73. Garapon C, Malinowski M, Joubert MF, Kaminskii AA, Jacquier B (1994) IR luminescence from the 1G4 multiplet of Pr3+ in various doped crystals. J. De Physique IV C4: 349.

    Google Scholar 

  74. Zhang GG, Wang J, Chen Y, Su Q (2010) Two-color emitting of Ce3+ and Tb3+ co-doped CaLaGa3S6O for UV LEDs. Opt Lett 35: 2382.

    Google Scholar 

  75. Chen Y, Wang J, Liu CM, Tang JK, Kuang XJ, Wu MM, Su Q (2013) UV-Vis-NIR luminescence properties and energy transfer mechanism of LiSrPO4:Eu2+, Pr3+ suitable for solar spectral convertor. Opt Express 21: 3161.

    Google Scholar 

  76. Paques-Ledent MT (1978) Vibrational spectra and structure of LiB2+PO4 compounds with B=Sr, Ba, Pb. J Solid State Chem 23(1-2): 147.

    Google Scholar 

  77. Hung WB, Chen TM (2015) Efficiency enhancement of silicon solar cells through a downshifting and antireflective oxysulfide phosphor layer. Sol Energ Mat Sol C 133: 39.

    Google Scholar 

  78. Liu J, Wang K, Zheng W, Huang W, Li CH, You XZ (2013)Improving spectral response of monocrystalline silicon photovoltaic modules using high efficient luminescent down-shifting Eu3+ complexes. Prog Photovolt: Res Appl 21: 668.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Wang, J., Zhang, X., Su, Q. (2016). Rare Earth Solar Spectral Convertor for Si Solar Cells. In: Liu, RS. (eds) Phosphors, Up Conversion Nano Particles, Quantum Dots and Their Applications. Springer, Singapore. https://doi.org/10.1007/978-981-10-1590-8_5

Download citation

Publish with us

Policies and ethics