Skip to main content

Abstract

White light by the combination of blue light-emitting diode (LED) and yellow phosphors is a relatively simple manufacturing process. However, it cannot be avoided the problem of reduced efficiency caused by scattering due to the large size of phosphors. In order to improve the color rendering index (CRI) of device, mixing various phosphors to meet the requirement is the main trends. However, the mixing ratio and decay rates between different phosphors will affect the device performance. Even using semiconductor nanocrystals (NCs, also called quantum dots, QDs) as nanophosphor, the same problems still exist, especially when they are applicated in lighting. If we can prepare white light quantum dot (W-QD) with high quantum yield (QY), the above problem can be overcome. Therefore, how to design synthesis process to obtain high quality of W-QDs with both band-edge and surface-state emission is the key issue. In this chapter, I describe the fundamental mechanism and preparation method of W-QDs. Some challenges for the application of W-QDs, especially in solid-state lighting and backlight, are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bowers II, MJ, McBride, JR, Rosenthal, SJ (2005) White-Light Emission from Magic-Sized Cadmium Selenide Nanocrystals. J Am Chem Soc 127: 15378.

    Google Scholar 

  2. Shen CC, Tseng, WL (2009) One-Step Synthesis of White-Light-Emitting Quantum Dots at Low Temperature. Inorg Chem 48: 8689.

    Google Scholar 

  3. Chen L, Zhu J. Li Q, Chen S, Wang Y (2007) Controllable synthesis of functionalized CdS nanocrystals and CdS/PMMA nanocomposite hybrids. European Polymer Journal 43: 4593.

    Google Scholar 

  4. Nizamoglu S, Mutlugun E, Akyuz O, Perkgoz NK, Demir HV, Liebscher L, Sapra S, Gaponik N, Eychmüller A (2008) White emitting CdS quantum dot nanoluminophores hybridized on near-ultraviolet LEDs for high-quality white light generation and tuning. New J Physics 10: 023026.

    Google Scholar 

  5. Chen HS, Wang KW, Chen SS, Chung SR (2013) ZnxCd1-xS quantum dots-based white light-emitting diodes. Optics Lett 38: 2080.

    Google Scholar 

  6. Chen HS, Chung SR, Chen TY, Wang KW (2014) Correlation between surface state and band edge emission of white light ZnxCd1−xS nanocrystals. J Mater Chem C 2: 2664.

    Google Scholar 

  7. Schreuder MA, Xiao K, Ivanov IN, Weiss SM, Rosenthal SJ (2010) White Light-Emitting Diodes Based on Ultrasmall CdSe Nanocrystal Electroluminescence. Nano Lett 10: 573.

    Google Scholar 

  8. Sapra S, Mayilo S, Klar TA, Rogach AL, Feldmann J (2007) Bright White-Light Emission from Semiconductor Nanocrystals: by Chance and by Design. Adv Mater 19: 569.

    Google Scholar 

  9. Puzder A, Williamson A, Gygi F, Galli G (2004) Self-Healing of CdSe Nanocrystals: First-Principles Calculations. Phys Rev Lett 92: 217401.

    Google Scholar 

  10. Lee JRI, Meulenberg RW, Hanif KM, Mattoussi H, Klepeis JE, Terminello LJ, Buuren T van (2007) Experimental Observation of Quantum Confinement in the Conduction Band of CdSe Quantum Dots. Phys Rev Lett 98: 146803.

    Google Scholar 

  11. Dukes AD, Schreuder MA, Sammons JA, McBride JR, Smith NJ, Rosenthal SJ (2008) Pinned emission from ultrasmall cadmium selenide nanocrystals. J Chem Phys 129: 121102.

    Google Scholar 

  12. Khanna PK, Singh N (2007) J. Luminescence 127: 474.

    Google Scholar 

  13. Goldstein L, Glas F, Marzin JY, Charasse MN, Le Roux G (1985) Growth by molecular beam epitaxy and characterization of InAs/GaAs strained‐layer superlattices. Appl Phys Lett 47: 1099.

    Google Scholar 

  14. Steigerwald ML, Alivisatos AP, Gibson JM, Harris TD, Kortan R, Muller AJ, Thayer AM, Duncan TM, Douglass DC, Brus LE (1988) Surface derivatization and isolation of semiconductor cluster molecules. J Am Chem Soc 110: 3046.

    Google Scholar 

  15. Murray CB, Norris DJ, Bawendi MG (1993) Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J Am Chm Soc 115: 8706.

    Google Scholar 

  16. Hines MA, Guyot-Sionnest P (1996) Synthesis and Characterization of Strongly Luminescing ZnS-Capped CdSe Nanocrystals. J Phys Chem 100: 468.

    Google Scholar 

  17. Dabbousi BO, Rodriguez-Viejo J, Mikulec FV, Heine JR, Mattoussi H, Ober R, Jensen KF, Bawendi MG (1997) (CdSe)ZnS Core-Shell Quantum Dots:  Synthesis and Characterization of a Size Series of Highly Luminescent Nanocrystallites. J Phys Chem B 101: 9463.

    Google Scholar 

  18. Bruchez M, Moronne M, Gin P, Weiss S, Alivisatos AP (1998) Semiconductor Nanocrystals as Fluorescent Biological Labels. Science 281: 2013.

    Google Scholar 

  19. Kazlas P, Zhaoqun Z, Stevenson M, Niu Y, Breen C, Perkins J, Kim S, Mahan G, Steckel JS, Coe-Sullivan S, Ritter J (2010) Quantum Dot Light Emitting Diodes for Full-color Active-matrix Displays. SID Symposium Digest of Technical Papers 41: 473.

    Google Scholar 

  20. Dang C, Lee J, Breen C, Steckel JS, Coe-Sullivan S, Nurmikko A (2012) Red, green and blue lasing enabled by single-exciton gain in colloidal quantum dot films. Nature Nanotechnol 7: 335.

    Google Scholar 

  21. Murray CB, Kagan CR, Bawendi MG (2000) Synthesis and Characterization of Monodisperse Nanocrystals and Close-Packed Nanocrystal Assemblies. Annu Rev Mater Sci 30: 545.

    Google Scholar 

  22. Peng ZA, Peng X (2001) Formation of High-Quality CdTe, CdSe, and CdS Nanocrystals Using CdO as Precursor. J Am Chem Soc 123: 183.

    Google Scholar 

  23. Chung SR, Wang KW, Chen HS (2013) Green Light Emission of ZnxCd1-xSe Nanocrystals Synthesized by One-Pot Method. J Nanomaterials 2013: Article ID 526862.

    Google Scholar 

  24. Chung SR, Wang KW, Chen HS, Chen HH (2015) Novel red-emission of ternary ZnCdSe semiconductor nanocrystals. J Nanoparticle Research 17: 101.

    Google Scholar 

  25. Alivisatos AP (1996) Perspectives on the Physical Chemistry of Semiconductor Nanocrystals. J Phys Chem 100: 13226.

    Google Scholar 

  26. Bawendi MG, Wilson WL, Rotheberg L, Carroll PJ, Jedju TM, Steigerwald ML, Brus LE (1990) Electronic structure and photoexcited-carrier dynamics in nanometer-size CdSe clusters. Phys Rev Lett 65: 1623.

    Google Scholar 

  27. Manna L, Scher E, Li L, Alivisatos AP (2002) Epitaxial Growth and Photochemical Annealing of Graded CdS/ZnS Shells on Colloidal CdSe Nanorods. J Am Chem Soc 124: 7136.

    Google Scholar 

  28. Bawendi MG, Carroll PJ, Wilson WL, Brus LE (1992) Luminescence properties of CdSe quantum crystallites: Resonance between interior and surface localized states. J Chem Phys 96: 946.

    Google Scholar 

  29. Underwood DF, Kippeny T, Rosenthal SJ (2001) Charge carrier dynamics in CdSe nanocrystals: implications for the use of quantum dots in novel photovoltaics. Eur Phys J D 16: 241.

    Google Scholar 

  30. Schreuder MA, McBride JR, Dukes AD, Sammons JA, Rosenthal SJ (2009) Control of Surface State Emission via Phosphonic Acid Modulation in Ultrasmall CdSe Nanocrystals: The Role of Ligand Electronegativity. J Phys Chem C 113: 8169.

    Google Scholar 

  31. Li Q, Guo S, Xu P, Wu L (2013) Controllable surface-state emission from colloidal CdS quantum dots under different growth conditions. Cryst Res Technol 48: 977.

    Google Scholar 

  32. Xiao Q, Xiao C (2009) Surface-defect-states photoluminescence in CdS nanocrystals prepared by one-step aqueous synthesis method. Appl Surf Sci 255: 7111.

    Google Scholar 

  33. Raevskaya AE, Stroyuk OL, Solonenko DI, Dzhagan VM, Lehmann D, Kuchmiy SY, Plyusnin VF, Zahn DRT (2014) Synthesis and luminescent properties of ultrasmall colloidal CdS nanoparticles stabilized by Cd(II) complexes with ammonia and mercaptoacetate. J Nanoparticle Research 16: 2650.

    Google Scholar 

  34. Molaei M, Marandi M, Saievar-Iranizad E, Taghavinia N, Liu B, Sun HD, Sun XW (2012) Near-white emitting QD-LED based on hydrophilic CdS nanocrystals. J. Luminescence 132: 467.

    Google Scholar 

  35. Protière M, Reiss P (2006) Facile synthesis of monodisperse ZnS capped CdS nanocrystals exhibiting efficient blue emission. Nanoscale Res Lett 1: 62.

    Google Scholar 

  36. Ozel T, Soganci IM, Nizamoglu S, Huyal IO, Mutlugun E, Sapra S, Gaponik N, Eychmu¨ller A, Demir HV (2008) Selective enhancement of surface-state emission and simultaneous quenching of interband transition in white-luminophor CdS nanocrystals using localized plasmon coupling. New J Phys 10: 083035.

    Google Scholar 

  37. Shea-Rohwer LE, Martin JE (2007) Luminescence decay of broadband emission from CdS quantum dots. J Lumin 127: 499.

    Google Scholar 

  38. Shea-Rohwer LE, Martin JE, Kelley DF (2010) Increasing the Luminescent Quantum Yield of CdS Nanoparticles Having Broadband Emission. J Electrochem Soc 157: J1.

    Google Scholar 

  39. Dai Q, Li D, Chang J, Song Y, Kan S, Chen H, Zou B, Xu W, Xu S, Liu B, Zou G (2007) Facile synthesis of magic-sized CdSe and CdTe nanocrystals with tunable existence periods. Nanotechnology 18: 405603.

    Google Scholar 

  40. Chung SR, Yu YH, Wang KW (2014) Application of Quantum Dots in Solid State Lighting. Proc. SPIE 9200: 92000K1.

    Google Scholar 

  41. Lee J, Sundar VC, Heine JR, Bawendi MG, Jensen KF (2000) Full color emission from II-VI semiconductor quantum dot polymer composites. Adv Mater 12: 1102.

    Google Scholar 

  42. Wood V, Panzer ML, Long J, Bradley MS, Halpert JE, Bawendi MG (2009) Inkjet printing of polymer-quantum dot composites for full color AC electroluminescent displays. Adv Mater 21: 2151.

    Google Scholar 

  43. Bourzac K (2013) Quantum dots go on display. Nature 493: 283.

    Google Scholar 

  44. Wood V, Bulović V (2010) Colloidal quantum dot light-emitting devices. Nano Reviews 1: 5202.

    Google Scholar 

  45. Gosnell JD, Schreuder MA, Bowers MJ, Rosenthal SJ, Weiss SM (2006) Cadmium selenide nanocrystals as white-light phosphors. Proc SPIEsInt Soc Opt Eng 6337: 63370A.

    Google Scholar 

  46. Schreuder MA, Gosnell JD, Smith NJ, Warnement MR, Weiss SM, Rosenthal SJ (2008) Encapsulated white-light CdSe nanocrystals as nanophosphors for solid-state lighting. J Mater Chem 18: 970.

    Google Scholar 

  47. Gosnell JD, Rosenthal SJ, Weiss SM (2010) White Light Emission Characteristics of Polymer-encapsulated CdSe Nanocrystal Films. IEEE Photon Technol Lett 22: 541.

    Google Scholar 

  48. Yu K, Hu MZ, Wang R, Piolet ML, Frotey M, Zaman MB, Wu X, Leek DM, Tao Y, Wilkinson D, Li C (2010) Thermodynamic Equilibrium-Driven Formation of Single-Sized Nanocrystals: Reaction Media Tuning CdSe Magic-Sized versus Regular Quantum Dots. J Phys Chem C 114: 3329.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shu-Ru Chung .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Chung, SR. (2016). Foundations of White Light Quantum Dots. In: Liu, RS. (eds) Phosphors, Up Conversion Nano Particles, Quantum Dots and Their Applications. Springer, Singapore. https://doi.org/10.1007/978-981-10-1590-8_14

Download citation

Publish with us

Policies and ethics