Skip to main content

Molecular Farming: Prospects and Limitation

  • Chapter
  • First Online:
Banana: Genomics and Transgenic Approaches for Genetic Improvement

Abstract

Plant molecular farming is the production of recombinant pharmaceutical and nonpharmaceutical proteins of commercial importance utilizing plants as bioreactors. Research and development on plant-derived recombinant proteins have gained momentum in recent years. Advantages of employing plants as bioreactors for recombinant protein generation are many including low cost of production, easier scale-up, cost-effective storage, and absence of animal pathogens in protein preparations. This article reviews the various technologies developed for employing plants as bioreactors, different plant systems being used as expression host, and limitations and research advances to overcome these limitations. An overview of different plant-derived products whether currently in market or are in different stages of development, including phases of clinical trials, is described. Special emphasis has been given on banana being used as an expression host, advantages and limitations of using banana in plant molecular farming, and different approaches which can be utilized to overcome those limitations have been described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ananiev EV, Wu C, Chamberlin MA, Svitashev S, Schwartz C, Gordon-Kamm W et al (2009) Artificial chromosome formation in maize (Zea mays L.). Chromosoma 118:157–177

    Article  CAS  PubMed  Google Scholar 

  • Barta A, Sommengruber K, Thompson D, Hartmuth K, Matzke MA, Matzke AJM (1986) The expression of a napoline synthase human growth hormone chimeric gene in transformed tobacco and sunflower callus tissue. Plant Mol Biol 6:347–357

    Article  CAS  PubMed  Google Scholar 

  • Basaran P, Rodríguez-Cerezo E (2008) Plant molecular farming: opportunities and challenges. Crit Rev Biotechnol 28:153–172

    Article  PubMed  Google Scholar 

  • Bendich AJ (1987) Why do chloroplast and mitochondria contain so many copies of their genome? Bioessays 6:279–282

    Article  CAS  PubMed  Google Scholar 

  • Bhat SR, Srinivasan S (2002) Molecular and genetic analyses of transgenic plants: considerations and approaches. Plant Sci 163:673–681

    Article  CAS  Google Scholar 

  • Bhatla SC, Kaushik V, Yadav MK (2010) Use of oil bodies and oleosins in recombinant protein production and other biotechnological applications. Biotechnol Adv 28:293–300

    Article  CAS  PubMed  Google Scholar 

  • Biemelt S, Sonnewald U (2005) Molecular farming in plants. Nature encyclopedia of life sciences. Nature Publishing Group, London. doi:10.1038/npg.els.0003365. http://www.els.net/

    Google Scholar 

  • Breyer D, Goossens M, Herman P, Sneyers M (2009) Biosafety considerations associated with molecular farming in genetically modified plants. J Med Plants Res 3:825–838

    Google Scholar 

  • Canizares MC, Nicholson L, Lomonossoff GP (2005) Use of viral vectors for vaccine production in plants. Immunol Cell Biol 83:263–270

    Article  CAS  PubMed  Google Scholar 

  • Caroca R, Howell KA, Hasse C, Ruf S, Bock R (2013) Design of chimeric expression elements that confer high-level gene activity in chromoplasts. Plant J 73:368–379

    Article  CAS  PubMed  Google Scholar 

  • Chan HT, Daniell H (2015) Plant-made oral vaccines against human infectious diseases-are we there yet? Plant Biotechnol J 13:70

    Article  CAS  Google Scholar 

  • Chen M, Liu M, Wang Z, Song J, Qi Q, Wang PG (2005) Modification of plant N-glycans processing: the future of producing therapeutic proteins in transgenic plants. Med Res Rev 25:343–360

    Article  CAS  PubMed  Google Scholar 

  • Christensen AH, Quail PH (1996) Ubiquitin promoter-based vectors for high-level expression of selectable and/or screenable marker genes in monocotyledonous plants. Transgenic Res 5:213–218

    Article  CAS  PubMed  Google Scholar 

  • Clendennen SK, Lopez-Gomez R, Gomez-Lim M et al (1998) The abundant 31-kilodalton banana pulp protein is homologous to class III acidic chitinases. Phytochemistry 47:613–619

    Article  CAS  PubMed  Google Scholar 

  • Commandeur U, Twyman RM, Fischer R (2003) The biosafety of molecular farming in plants. AgBiotechNet 5:ABN 110

    Google Scholar 

  • Corrado G, Karali M (2009) Inducible gene expression systems and plant biotechnology. Biotechnol Adv 27:733–743

    Article  PubMed  Google Scholar 

  • Cox KM, Sterling JD, Regan JT, Gasdaska JR, Frantz KK, Peele CG et al (2006) Glycan optimization of a human monoclonal antibody in the aquatic plant Lemna minor. Nat Biotechnol 24:1591–1597

    Article  CAS  PubMed  Google Scholar 

  • Cramer CL, Weissenborn DL, Oishi KK et al (1996) High level production of enzymatically active human lysosomal proteins in transgenic plants. In: Owen MRL, Pen J (eds) Transgenic plants: a production system for industrial and pharmaceutical protein. Wiley, Chichester, pp 299–310

    Google Scholar 

  • Daniell H, Streatfield SJ, Wycoff K (2001a) Medical molecular farming: production of antibodies, biopharmaceuticals and edible vaccines in plants. Trends Plant Sci 6:219–226

    Article  CAS  PubMed  Google Scholar 

  • Daniell H, Lee SB, Panchal T, Wiebe PO (2001b) Expression of the native cholera toxin B subunit gene and assembly as functional oligomers in transgenic tobacco chloroplasts. J Mol Biol 311:1001–1009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daniell H, Khan MS, Allison L (2002) Milestones in chloroplast genetic engineering: an environmentally friendly era in biotechnology. Trends Plant Sci 7:84–91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Jaeger G, Scheffer S, Jacobs A, Zambre M, Zobell O, Goossens A et al (2002) Boosting heterologous protein production in transgenic dicotyledonous seeds using Phaseolus vulgaris regulatory sequences. Nat Biotechnol 20:1265–1268

    Article  PubMed  CAS  Google Scholar 

  • De Paepe A, De Buck S, Hoorelbeke K, Nolf J, Peck I, Depicker (2009) A high frequency of single copy T-DNA transformants by floral dip in CRE-expressing Arabidopsis plants. Plant J 59:517–527

    Article  PubMed  CAS  Google Scholar 

  • Decker EL, Reski R (2004) The moss bioreactor. Curr Opin Plant Biol 7:166–170

    Article  CAS  PubMed  Google Scholar 

  • Decker EL, Reski R (2008) Current achievements in the production of complex biopharmaceuticals with moss bioreactors. Bioprocess Biosyst Eng 31:3–9

    Article  CAS  PubMed  Google Scholar 

  • Delaney DE (2002) Choice of crop species and development of transgenic product lines. In: Hood EE, Howard JA (eds) Plants as factories for protein production. Kluwer, Dordrecht, pp 139–158

    Chapter  Google Scholar 

  • Doran PM (2000) Foreign protein production in plant tissue cultures. Curr Opin Biotechnol 11:199–204

    Article  CAS  PubMed  Google Scholar 

  • Drake PMW, Barbi T, Sexton A, McGowan E, Stadlmann J, Navarre C, Paul MJ, Ma JKC (2009) Development of rhizosecretion as a production system for recombinant proteins from hydroponic cultivated tobacco. FASEB J 23:3581–3589

    Article  CAS  PubMed  Google Scholar 

  • Elliott S, Lorenzini T, Asher S et al (2003) Enhancement of therapeutic protein in vivo activities through glycoengineering. Nat Biotechnol 21:414–421

    Article  CAS  PubMed  Google Scholar 

  • Faye L, Gomord V (2010) Success stories in molecular farming—a brief overview. Plant Biotechnol J 8:525–528

    Article  PubMed  Google Scholar 

  • Faye L, Boulaflous A, Benchabane M, Gomord V, Michaud D (2005) Protein modifications in the plant secretory pathway: current status and practical implications in molecular pharming. Vaccine 23:1770–1778

    Article  CAS  PubMed  Google Scholar 

  • Fischer R, Emans NJ, Twyman RM, Schillberg S (2004) Molecular farming in plants: technology platforms. In: Goodman RB (ed) Encyclopedia of plant and crop science. Marcel Dekker, New York, pp 753–756

    Chapter  Google Scholar 

  • Floss DM, Sack M, Arcalis E, Stadlmann J, Quendler H, Rademacher T et al (2009) Influence of elastin-like peptide fusions on the quantity and quality of a tobacco-derived human immunodeficiency virus-neutralizing antibody. Plant Biotechnol J 7:899–913

    Article  CAS  PubMed  Google Scholar 

  • Franconi R, Demurtas OC, Massa S (2010) Plant-derived vaccines and other therapeutics produced in contained systems. Expert Rev Vaccin 9:877–892

    Article  CAS  Google Scholar 

  • Franklin SE, Mayfield SP (2005) Recent developments in the production of human therapeutic proteins in eukaryotic algae. Expert Opin Biol Ther 5:225–235

    Article  CAS  PubMed  Google Scholar 

  • Frigerio L, de Virgilio M, Prada A, Faoro F, Vitale A (1998) Sorting of phaseolin to the vacuole is saturable and requires a short C-terminal peptide. Plant Cell 10:1031–1042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ganapathi TR, Higgs NS, Balint-Kurti PJ, Arntzen CJ, May GD, Van Eck JM (2001) Agrobacterium mediated transformation of embryogenic cell suspensions of the banana cultivar Rasthali (AAB). Plant Cell Rep 20:157–162

    Article  CAS  Google Scholar 

  • Gasdaska JR, Spencer D, Dickey L (2003) Advantages of therapeutic protein production in the aquatic plant Lemna. BioProcess J 2:49–56

    Article  Google Scholar 

  • Gaume A, Komarnytsky S, Borisjuk N, Raskin I (2003) Rhizosecretion of recombinant proteins from plant hairy roots. Plant Cell Rep 21:1188–1193

    Article  CAS  PubMed  Google Scholar 

  • Ghosh A, Shekhawat UKS, Ganapathi TR, Bapat VA (2012) Analysis of banana fruit-specific promoters using transient expression in embryogenic cells of banana cultivar Robusta (AAA Group). J Plant Biochem Biot 21:189–197

    Article  CAS  Google Scholar 

  • Giritch A, Marillonnet S, Engler C, van Eldik G, Botterman J, Klimyuk V et al (2006) Rapid high yield expression of full-size IgG antibodies in plants coinfected with noncompeting viral vectors. Proc Natl Acad Sci U S A 103:14701–14706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gleba Y, Klimyuk V, Marillonnet S (2005) Magnifection—a new platform for expressing recombinant vaccines in plants. Vaccine 23:2042–2048

    Article  CAS  PubMed  Google Scholar 

  • Gomord V, Sourrouille C, Fitchette AC et al (2004) Production and glycosylation of plant-made pharmaceuticals: the antibodies as a challenge. Plant Biotechnol J 2:83–100

    Article  CAS  PubMed  Google Scholar 

  • Guillon S, Trémouillaux-Guiller J, Kumar Pati P, Rideau M, Gantet P (2006) Hairy root research: recent scenario and exciting prospects. Curr Opin Plant Biol 9:341–346

    Article  CAS  PubMed  Google Scholar 

  • Hamamoto H, Sugiyama Y, Nakagawa N et al (1993) A new tobacco mosaic virus vector and its use for the systemic production of angiotensin – 1 converting enzyme inhibitor in transgenic tobacco and tomato. Biotechnology 11:930–932

    Article  CAS  PubMed  Google Scholar 

  • He Z, Jiang XL, Qi Y, Di QL (2008) Assessment of the utility of the tomato fruit-specific E8 promoter for driving vaccine antigen expression. Genetica 133:207–214

    Article  CAS  PubMed  Google Scholar 

  • Higo K, Saito Y, Higo H (1993) Expression of a chemically synthesized gene for human epidermal growth factor under the control of cauliflower mosaic virus 35S promoter in transgenic tobacco. Biosci Biotechnol Biochem 57:1477–1481

    Article  CAS  PubMed  Google Scholar 

  • Hohe A, Decker E, Gorr G, Schween G, Reski R (2002) Tight control of growth and cell differentiation in photoautotrophically growing moss (Physcomitrella patens) bioreactor cultures. Plant Cell Rep 20:1135–1140

    Article  CAS  Google Scholar 

  • Hood EE, Witcher DR, Maddock S, Meyer T, Baszczynski C, Bailey M et al (1997) Commercial production of avidin from transgenic maize: characterization of transformant, production, processing, extraction and purification. Mol Breed 3:291–306

    Article  CAS  Google Scholar 

  • Horn ME, Woodard SL, Howard JA (2004) Plant molecular farming: systems and products. Plant Cell Rep 22:711–720

    Article  CAS  PubMed  Google Scholar 

  • Huang Z, Santi L, LePore K et al (2006) Rapid, high-level production of hepatitis B core antigen in plant leaf and its immunogenicity in mice. Vaccine 24:2506–2513

    Article  CAS  PubMed  Google Scholar 

  • Jost W, Link S, Horstmann V et al (2005) Isolation and characterization of three moss-derived betatubulin promoters suitable for recombinant expression. Curr Genet 47:111–120

    Article  CAS  PubMed  Google Scholar 

  • Kaiser J (2008) Is the drought over for pharming? Science 320:473–475

    Article  CAS  PubMed  Google Scholar 

  • Kang JS, Frank J, Kang CH, Kajiura H, Vikram M, Ueda A (2008) Salt tolerance of Arabidopsis thaliana requires maturation of N-glycosylated proteins in the Golgi apparatus. Proc Natl Acad Sci U S A 105:5933–5938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kapila J, De Rycke R, van Montagu M et al (1997) An Agrobacterium mediated transient expression system for intact leaves. Plant Sci 122:101–108

    Article  CAS  Google Scholar 

  • Key S, Ma JKC, Drake PMW (2008) Genetically modified plants and human health. J R Soc Med 101:290–298

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim TG, Baek M, Lee EK, Kwon T-H, Yang M-S (2008) Expression of human growth hormone in transgenic rice cell suspension culture. Plant Cell Rep 27:885–891

    Article  CAS  PubMed  Google Scholar 

  • Koide Y, Hirano H, Matsuoka K, Nakamura K (1997) The N-terminal propeptide of the precursor to sporamin acts as a vacuole-targeting signal even at the C terminus of the mature part in tobacco cells. Plant Physiol 114:863–870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koprivova A, Stemmer C, Altmann F, Hoffmann A, Kopriva S, Gorr G et al (2004) Targeted knockouts of Physcomitrella lacking plant-specific immunogenic N-glycans. Plant Biotechnol J 2:517–523

    Article  CAS  PubMed  Google Scholar 

  • Krapp S, Mimura Y, Jefferis R, Huber R, Sondermann P (2003) Structural analysis of human IgGFc glycoforms reveals a correlation between glycosylation and structural integrity. J Mol Biol 325:979–989

    Article  CAS  PubMed  Google Scholar 

  • Kumar SGB, Ganapathi TR, Bapat VA (2004) Edible vaccines: current status and future prospects. Physiol Mol Biol Plants 10:37–47

    Google Scholar 

  • Kumar GB, Ganapathi TR, Revathi CJ, Srinivas L, Bapat VA (2005) Expression of hepatitis B surface antigen in transgenic banana plants. Planta 222:484–493

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Hahn FM, Baidoo E, Kahlon TS, Wood DF, McMahan CM, Cornish K, Keasling JD, Daniell H, Whalen MC (2012) Remodeling the isoprenoid pathway in tobacco by expressing the cytoplasmic mevalonate pathway in chloroplasts. Metab Eng 14:19–28

    Article  CAS  PubMed  Google Scholar 

  • Lamphear BJ, Streatfield SJ, Jilka JM, Brooks CA, Barker DK, Turner DD et al (2002) Delivery of subunit vaccines in maize seed. J Control Release 85:169–180

    Article  CAS  PubMed  Google Scholar 

  • LaVallie ER, McCoy JM (1995) Gene fusion expression systems in Escherichia coli. Curr Opin Biotechnol 6:501–506

    Article  CAS  PubMed  Google Scholar 

  • Lienard D, Sourrouille C, Gomord V, Faye L (2007) Pharming and transgenic plants. Biotechnol Ann Rev 13:115–147

    Article  CAS  Google Scholar 

  • Lu J, Sivamani E, Azhakanandam K, Samadder P, Li X, Qu R (2008) Gene expression enhancement mediated by the 5UTR intron of the rice rubi3 gene varied remarkably among tissues in transgenic rice plants. Mol Genet Genomics 279:563–572

    Article  CAS  PubMed  Google Scholar 

  • Lutcke HA, Chow KC, Mickel FS, Moss KA, Kern HF, Scheele GA (1987) Selection of AUG initiation codons differs in plants and animals. EMBO J 6:43–48

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ma JK, Drake PM, Christou P (2003) The production of recombinant pharmaceutical proteins in plants. Nat Rev Genet 4:794–805

    Article  CAS  PubMed  Google Scholar 

  • Magnuson NS, Linzmaier PM, Reeves R et al (1998) Secretion of biologically active human interleukin- 2 and interleukin-4 from genetically modified tobacco cells in suspension culture. Protein Exp Purif 13:45–52

    Article  CAS  Google Scholar 

  • Mainieri D, Rossi M, Archinti M, Bellucci M, De Marchis F, Vavassori S et al (2004) Zeolin. A new recombinant storage protein constructed using maize gamma-zein and bean phaseolin. Plant Physiol 136:3447–3456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mason HS, Warzecha H, Mor T, Arntzen CJ (2002) Edible plant vaccines: applications for prophylactic and therapeutic molecular medicine. Trends Mol Med 8:324–329

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto S, Ikura K, Ueda M et al (1995) Characterization of a human glycoprotein (erythropoietin) produced in cultured tobacco cells. Plant Mol Biol 27:1163–1172

    Article  CAS  PubMed  Google Scholar 

  • May GD, Kipp PB (1997) Gene promoter sequence from banana. Patent No. WO 9738106-A 1, Zeneca LTD (GB)

    Google Scholar 

  • Mayfield SP, Franklin SE, Lerner RA (2003) Expression and assembly of a fully active antibody in algae. Proc Natl Acad Sci U S A 100:438–442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCormick AA, Reddy S, Reinl SJ, Cameron TI, Czerwinkski DK, Vojdani F et al (2008) Plant produced idiotype vaccines for the treatment of non-Hodgkin’s lymphoma: safety and immunogenicity in a phase I clinical study. Proc Natl Acad Sci U S A 105:10131–10136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mishra S, Yadav DK, Tuli R (2006) Ubiquitin fusion enhances cholera toxin B subunit expression in transgenic plants and the plant-expressed protein binds GM1 receptors more efficiently. J Biotechnol 127:95–108

    Article  CAS  PubMed  Google Scholar 

  • Muntz K (1998) Deposition of storage proteins. Plant Mol Biol 38:77–99

    Article  CAS  PubMed  Google Scholar 

  • Murphy DJ (1993) Structure, function and biogenesis of storage lipid bodies and oleosins in plants. Prog Lipid Res 32:247–280

    Article  CAS  PubMed  Google Scholar 

  • Nagaya S, Kawamura K, Shinmyo A, Kato K (2010) The HSP terminator of Arabidopsis thaliana increases gene expression in plant cells. Plant Cell Physiol 51:328–332

    Article  CAS  PubMed  Google Scholar 

  • Nara Y, Kurata H, Seki M, Taira K (2000) Glucocorticoid-induced expression of a foreign gene by the GVG system in transformed tobacco BY-2 cells. Biochem Eng J 6:185–191

    Article  CAS  PubMed  Google Scholar 

  • Ni M, Cui D, Einstein J, Narasimhulu S, Vergara CE, Gelvin SB (1995) Strength and tissue specificity of chimeric promoters derived from the octopine and mannopine synthase genes. Plant J 7:661–676

    Article  CAS  Google Scholar 

  • Nochi T, Takagi H, Yuki Y, Yang L, Masumura T, Mejima M et al (2007) Rice-based mucosal vaccine as a global strategy for cold-chain- and needle-free vaccination. Proc Natl Acad Sci U S A 104:10986–10991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Obembe OO, Popoola JO, Leelavathi S, Reddy SV (2011) Advances in plant molecular farming. Biotechnol Adv 29:210–222

    Article  PubMed  Google Scholar 

  • Padidam M (2003) Chemically regulated gene expression in plants. Curr Opin Plant Biol 6:169–177

    Article  CAS  PubMed  Google Scholar 

  • Palacpac NQ, Yoshida S, Sakai H et al (1999) Stable expression of human 1,4-galactosyltransferase in plant cells modifies N-linked glycosylation patterns. Proc Natl Acad Sci U S A 96:4692–4697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pelham HR (1990) The retention signal for soluble proteins of the endoplasmic reticulum. Trends Biochem Sci 15:483–486

    Article  PubMed  Google Scholar 

  • Peumans WJ, Proost P, Swennen RL et al (2002) The abundant class III chitinase homolog in young developing banana fruits behaves as a transient vegetative storage protein and most probably serves as an important supply of amino acids for the synthesis of ripening-associated proteins. Plant Physiol 130:1063–1072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Porta C, Lomonossoff GP (2002) Viruses as vectors for the expression of foreign sequences in plants. Biotechnol Genet Eng Rev 19:245–291

    Article  CAS  PubMed  Google Scholar 

  • Ramessar K, Sabalza M, Capell T, Christou P (2008) Maize plants: an ideal production platform for effective and safe molecular pharming. Plant Sci 174:409–419

    Article  CAS  Google Scholar 

  • Rosales-Mendoza S, Soria-Guerra RE, Moreno-Fierros L, Alpuche-Solís ÁG, Martínez-González L, Korban SS (2010) Expression of an immunogenic F1-V fusion protein in lettuce as a plant-based vaccine against plague. Planta 232:409–416

    Article  CAS  PubMed  Google Scholar 

  • Ruhlman T, Verma D, Samson N, Daniell H (2010) The role of heterologous chloroplast sequence elements in transgene integration and expression. Plant Physiol 152:2088–2104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rybicki EP (2010) Plant-made vaccines for humans and animals. Plant Biotechnol J 8:620–637

    Article  CAS  PubMed  Google Scholar 

  • Salmon V, Legrand D, Slomianny MC et al (1998) Production of human lactoferrin in transgenic tobacco plants. Prot Expr Purif 13:127–135

    Article  CAS  Google Scholar 

  • Santi L, Giritch A, Roy CJ et al (2006) Protection conferred by recombinant Yersinia pestis antigen produced by a rapid and highly scalable plant expression system. Proc Natl Acad Sci U S A 103:861–866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schaefer DG (2002) A new moss genetics: targeted mutagenesis in Physcomitrella patens. Annu Rev Plant Biol 53:477–501

    Article  CAS  PubMed  Google Scholar 

  • Schillberg S, Twyman RM, Fischer R (2005) Opportunities for recombinant antigen and antibody expression in transgenic plants—technology assessment. Vaccine 23:1764–1769

    Article  CAS  PubMed  Google Scholar 

  • Schillberg S, Raven N, Fischer R, Twyman RM, Schiermeyer A (2013) Molecular farming of pharmaceutical proteins using plant suspension cell and tissue cultures. Curr Pharm Design 19:5531–5542

    Article  CAS  Google Scholar 

  • Schunmann PHD, Surin B, Waterhouse PM (2003) A suite of novel promoters and terminators for plant biotechnology. II. The pPLEX series for use in monocots. Funct Plant Biol 30:453–460

    Article  CAS  Google Scholar 

  • Shaaltiel Y, Bartfeld D, Hashmueli S, Baum G, Brill-Almon E, Galili G et al (2007) Production of glucocerebrosidase with terminal mannose glycans for enzyme replacement therapy of Gaucher’s disease using a plant cell system. Plant Biotechnol J 5:579–590

    Article  CAS  PubMed  Google Scholar 

  • Sharma AK, Sharma MK (2009) Plants as bioreactors: recent developments and emerging opportunities. Biotechnol Adv 27:811–832

    Article  CAS  PubMed  Google Scholar 

  • Sharma MK, Singh NK, Jani D, Sisodia R, Thungapathra M, Gautam JK et al (2008) Expression of toxin co-regulated pilus subunit A (TCPA) of Vibrio cholerae and its immunogenic epitopes fused to choleratoxin B subunit in transgenic tomato (Solanum lycopersicum). Plant Cell Rep 27:307–318

    Article  CAS  PubMed  Google Scholar 

  • Sijmons PC, Dekker BMM, Schrammeijer B et al (1990) Production of correctly processed human serum albumin in transgenic plants. Biotechnology 8:217–221

    Article  CAS  PubMed  Google Scholar 

  • Smith ML, Keegan ME, Mason HS, Schuler ML (2002) Factors important in the extraction, stability and in vitro assembly of the hepatitis B surface antigen derived from recombinant plant systems. Biotechnol Prog 18:538–550

    Article  CAS  PubMed  Google Scholar 

  • Smith ML, Richter L, Arntzen CJ, Schuler ML, Mason HS (2003) Structural characterization of plant derived hepatitis B surface antigen employed in oral immunization studies. Vaccine 21:4011–4021

    Article  CAS  PubMed  Google Scholar 

  • Sourrouille C, Marquet-Blouin E, D’Aoust MA, Kiefer-Meyer M-C, Seveno M, Pagny-Salehabadi S et al (2008) Down-regulated expression of plant-specific glycoepitopes in alfalfa. Plant Biotechnol J 6:702–721

    Article  CAS  PubMed  Google Scholar 

  • Sparrow PA, Irwin JA, Dale PJ, Twyman RM, Ma JK (2007) Pharma-Planta: road testing the developing regulatory guidelines for plant-made pharmaceuticals. Transgenic Res 16:147–161

    Article  CAS  PubMed  Google Scholar 

  • Spiker S, Thompson WF (1996) Nuclear matrix attachment regions and transgene expression in plants. Plant Physiol 110:15–21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Staub JM, Garcia B, Graves J et al (2000) High yield production of a human therapeutic protein in tobacco chloroplasts. Nat Biotechnol 18:333–338

    Article  CAS  PubMed  Google Scholar 

  • Stoger E, Sack M, Fischer R, Christou P (2002) Plantibodies: applications, advantages and bottlenecks. Curr Opin Biotechnol 13:161–166

    Article  CAS  PubMed  Google Scholar 

  • Stoger E, Ma JKC, Fischer R, Christou P (2005) Sowing the seeds of success: pharmaceutical proteins from plants. Curr Opin Biotechnol 16:167–173

    Article  CAS  PubMed  Google Scholar 

  • Streatfield SJ, Howard JA (2003) Plant-based vaccines. Int J Parasitol 33:479–493

    Article  CAS  PubMed  Google Scholar 

  • Tremblay R, Wang D, Jevnikar AM, Ma S (2010) Tobacco, a highly efficient green bioreactor for production of therapeutic proteins. Biotechnol Adv 28:214–221

    Article  CAS  PubMed  Google Scholar 

  • Twyman RM, Schillberg S, Fischer R (2005) Transgenic plants in the biopharmaceutical market. Expert Opin Emerg Drugs 10:185–218

    Article  CAS  PubMed  Google Scholar 

  • Valenzuela P, Medina A, Rutter W, Ammerer G, Hall B (1982) Synthesis and assembly of hepatitis B virus surface antigen particles in yeast. Nature 298:347–350

    Article  CAS  PubMed  Google Scholar 

  • Vaquero C, Sack M, Chandler J et al (1999) Transient expression of a tumor specific single chain fragment and a chimeric antibody in tobacco leaves. Proc Natl Acad Sci U S A 96:11128–11133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vézina L-P, Faye L, Lerouge P, D’Aoust M-A, Marquet-Blouin E, Burel C et al (2009) Transient coexpression for fast and high-yield production of antibodies with human-like N-glycans in plants. Plant Biotechnol J 7:442–455

    Article  PubMed  CAS  Google Scholar 

  • Voinnet O, Rivas S, Mestre P, Baulcombe D (2003) An enhanced transient expression system in plants based on suppression of gene silencing by the p19 protein of tomato bushy stunt virus. Plant J 33:949–956

    Article  CAS  PubMed  Google Scholar 

  • Walmsley AM, Arntzen CJ (2003) Plant cell factories and mucosal vaccines. Curr Opin Biotechnol 14:145–150

    Article  CAS  PubMed  Google Scholar 

  • Wenderoth I, von Schaewen A (2000) Isolation and characterization of plant N-acetyl glucosaminyltransferase I (GntI) cDNA sequences. Functional analyses in the Arabidopsis cgl mutant and in antisense plants. Plant Physiol 123:1097–1108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilde CD, Peeters K, Jacobs A, Peck I, Depicker A (2002) Expression of antibodies and Fab fragments in transgenic potato plants: a case study for bulk production in crop plants. Mol Breed 9:271–282

    Article  Google Scholar 

  • Woodleif WG, Chaplin JF, Campbell CR et al (1981) Effect of variety and harvest treatments on protein yield of close grown tobacco. Tob Sci 25:83–86

    Google Scholar 

  • Yang D, Wu L, Hwang YS, Chen L, Huang N (2001) Expression of the REB transcriptional activator in rice grains improves the yield of recombinant proteins whose genes are controlled by a Reb-responsive promoter. Proc Natl Acad Sci U S A 98:11438–11443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yano M, Hirai T, Kato K, Hiwasa-Tanase K, Fukuda N, Ezura H (2010) Tomato is a suitable material for producing recombinant miraculin protein in genetically stable manner. Plant Sci 178:469–473

    Article  CAS  Google Scholar 

  • Yao J, Weng Y, Dickey A, Wang KY (2015) Plants as factories for human pharmaceuticals: applications and challenges. Int J Mol Sci 16:28549–28565

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

Authors thank Dr. SP Kale, Head, Nuclear Agriculture and Biotechnology Division, BARC, for his constant encouragement. VAB thanks Indian National Science Academy, New Delhi for Senior Scientist Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. R. Ganapathi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Tak, H., Negi, S., Ganapathi, T.R., Bapat, V.A. (2016). Molecular Farming: Prospects and Limitation. In: Mohandas, S., Ravishankar, K. (eds) Banana: Genomics and Transgenic Approaches for Genetic Improvement. Springer, Singapore. https://doi.org/10.1007/978-981-10-1585-4_18

Download citation

Publish with us

Policies and ethics