Advertisement

Transgenic Technologies for Bacterial Wilt Resistance

  • Leena TripathiEmail author
  • Jaindra Nath Tripathi
  • Jerome Kubiriba
Chapter

Abstract

Banana production is severely affected by bacterial diseases jeopardizing the food security of millions of inhabitants in countries where farmers depend upon banana as staple food. Bacterial diseases like Xanthomonas wilt, Moko, blood, and Bugtok are the most important diseases threatening banana cultivation in several tropical and subtropical countries. Genetic improvement of banana through classical breeding is difficult due to the lack of resistant germplasm, sterile nature, and long generation time. Transgenic technology can complement classical breeding for developing bacterial disease-resistant varieties. Some success has been achieved for developing host plant resistance in order to control banana Xanthomonas wilt (BXW) disease. Currently, the transgenic bananas expressing either sweet pepper Pflp or Hrap gene are under evaluation for resistance to Xanthomonas wilt disease in field trials in Uganda. Management of bacterial diseases through cultural practices like removal of male buds and use of pathogen-free seed material and disinfected cutting tools can contain outbreak of diseases although these are not absolute solutions for control of bacterial diseases. In this chapter, we have discussed various management practices as well as existing transgenic technologies to control bacterial diseases of banana.

Keywords

Banana Xanthomonas campestris pv. musacearum Transgenic technology 

Notes

Acknowledgments

The authors would like to thank US Agency for International Development (USAID) for financial support of BXW research. We acknowledge Academia Sinica, Taiwan, and the University of California, Davis, for providing gene constructs. We also acknowledge African Agricultural Technology Foundation (AATF) for negotiating license of Pflp and Hrap genes from Academia Sinica and for sublicensing the genes to International Institute of Tropical Agriculture (IITA).

References

  1. Abele S, Pillay M (2007) Bacterial wilt and drought stresses in banana production and their impact on economic welfare in Uganda: implications for banana research in East African highlands. J Crop Improv 19:173–191. doi: 10.1300/J411v19n01_09 CrossRefGoogle Scholar
  2. Arce P, Moreno M, Gutierrez M, Gebauer M, Dell’Orto P, Torres H, Acuna I, Oliger P, Venegas A, Jordana X, Kalazich J, Holuigue L (1999) Enhanced resistance to bacterial infection by Erwinia carotovora subsp. atroseptica in transgenic potato plants expressing the attacin or the cecropin SB-37 genes. Am J Potato Res 76:169–177. doi: 10.1007/BF02853582 CrossRefGoogle Scholar
  3. Aritua V, Parkinson N, Thwaites R, Heeney JV, Jones DJ, Tushemereirwe W, Crozier J, Reeder R, Stead DE, Smith J (2007) Characterization of the Xanthomonas sp. causing wilt of enset and banana and its proposed reclassification as a strain of X. vasicola. Plant Pathol 57:170–177. doi: 10.1111/j.1365-3059.2007.01687.x Google Scholar
  4. Bagamba F, Kikulwe E, Tushemereirwe WK, Ngambeki D, Muhangi J, Kagezi GH, Ragama PE, Eden-Green S (2006) Awareness of banana bacterial wilt control in Uganda: farmers’ perspective. Afr Crop Sci J 14:157–164. doi: 10.4314/acsj.v14i2.27923 Google Scholar
  5. Becker DK, Dugdale B, Smith MK, Harding RM, Dale JL (2000) Genetic transformation of Cavendish banana (Musa sp. AAA group) cv. Grand Nain via microprojectile bombardment. Plant Cell Rep 19:229–234. doi: 10.1007/s002990050004 CrossRefGoogle Scholar
  6. Bent AF (1996) Plant disease resistance genes: function meets structure. Plant Cell 8:1757–1771. doi: 10.1105/tpc.8.10.1757 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Bent AF, Yu IC (1999) Applications of molecular biology to plant disease and insect resistance. Adv Agron 66:251–298. doi: 10.1016/S0065-2113(08)60429-0 CrossRefGoogle Scholar
  8. Boman HG, Hultmark D (1987) Cell free immunity in insects. Annu Rev Microbiol 41:103–126. doi: 10.1146/annurev.mi.41.100187.000535 CrossRefPubMedGoogle Scholar
  9. Broekaert WF, Terras FRG, Cammue BPA, Osborn RW (1995) Plant defensins: novel antimicrobial peptides as components of the host defence system. Plant Physiol 108:1353–1358. doi: 10.1104/pp.108.4.1353 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Buregyeya H (2010) Evaluation of the contribution of birds, bats and farm tools in the long distance transmission of banana bacterial wilt; Masters’ thesis, Makerere University, Kampala UgandaGoogle Scholar
  11. Cao H, Li X, Dong X (1998) Generation of broad-spectrum disease resistance by overexpression of an essential regulatory gene in systemic acquired resistance. Proc Natl Acad Sci U S A 95:6531–6536. doi:PNAS-1998-Cao-6531-6xccfCrossRefPubMedPubMedCentralGoogle Scholar
  12. Carmona MJ, Molina A, Fernandez JA, Lopez-Fando JJ, Garcia-Olmedo F (1993) Expression of the alpha-thionin gene from barley in tobacco confers enhanced resistance to bacterial pathogens. Plant J 3:457–462. doi: 10.1111/j.1365-313X.1993.tb00165.x CrossRefPubMedGoogle Scholar
  13. Carter BA, Reeder R, Mgenzi SR, Kinyua ZM, Mbaka JN, Doyle K, Nakato V, Mwangi M, Beed F, Aritua V, Lewis Ivey ML, Miller SA, Smith JJ (2009) Identification of Xanthomonas vasicola (formerly X. campestris pv. musacearum), causative organism of banana Xanthomonas wilt, in Tanzania, Kenya and Burundi. New Dis Rep 19:25. doi: 10.1111/j.1365-3059.2009.02124.x Google Scholar
  14. Cary JW, Rajasekaran K, Jaynes JM, Cleveland TE (2000) Transgenic expression of a gene encoding a synthetic antimicrobial peptide results in inhibition of fungal growth in vitro and in planta. Plant Sci 154:171–181. doi: 10.1016/S0168-9452(00)00189-8 CrossRefPubMedGoogle Scholar
  15. Chakrabarti A, Ganapathi TR, Mukherjee PK, Bapat VA (2003) MSI-99, a magainin analogue, imparts enhanced disease resistance in transgenic tobacco and banana. Planta 216:587–596. doi: 10.1007/s00425-002-0918-y PubMedGoogle Scholar
  16. Chen CH, Lin HJ, Feng TY (1998) An amphipathic protein from sweet pepper can dissociate harpinPSS multimeric forms and intensify the harpinPSS-mediated hypersensitive response. Physiol Mol Plant Pathol 52:139–149. doi: 10.1006/pmpp.1997.0120 CrossRefGoogle Scholar
  17. Chen CH, Lin HJ, Ger MJ, Chow D, Feng TY (2000) The cloning and characterization of a hypersensitive response assisting protein that may be associated with the harpin-mediated hypersensitive response. Plant Mol Biol 43:429–438. doi: 10.1023/A:1006448611432 CrossRefPubMedGoogle Scholar
  18. Chern M, Fitzgerald HA, Canlas PE, Navarre DA, Ronald PC (2005) Over-expression of a rice NPR1 homolog leads to constitutive activation of defence response and hypersensitivity to light. MPMI 18:511–520. doi: 10.1094/MPMI-18-0511 CrossRefPubMedGoogle Scholar
  19. Dayakar BV, Lin HJ, Chen CH, Ger MJ, Lee BH, Pai CH, Chow D, Huang HE, Hwang SY, Chung MC, Feng TY (2003) Ferredoxin from sweet pepper (Capsicum annuum L.) intensifying harpin(pss)-mediated hypersensitive response shows an enhanced production of active oxygen species(AOS). Plant Mol Biol 51:913–924. doi: 10.1023/A:1023061303755 CrossRefPubMedGoogle Scholar
  20. De Gray G, Rajasekaran K, Smith F, Sanford J, Daniell H (2001) Expression of an antimicrobial peptide via the chloroplast genome to control phytopathogenic bacteria and fungi. Plant Physiol 127:852–862. doi: 10.1104/pp.010233 CrossRefGoogle Scholar
  21. Deslandes L, Pileur F, Liaubet L, Camut S, Can C, Williams K, Holub E, Beynon J, Arlat M, Marco Y (1998) Genetic characterization of RRS1, a recessive locus in Arabidopsis thaliana that confers resistance to the bacterial soilborne pathogen Ralstonia solanacearum. MPMI 11:659–667. doi: 10.1094/MPMI.1998.11.7.659 CrossRefPubMedGoogle Scholar
  22. Düring K, Porsch P, Fladung M, Lörz H (1993) Transgenic potato plants resistant to the phytopathogenic bacterium Erwinia carotovora. Plant J 3:587–598. doi: 10.1046/j.1365-313X.1993.03040587.x CrossRefGoogle Scholar
  23. Durrant WE, Dong X (2004) Systemic acquired resistance. Annu Rev Phytopathol 42:185–209. doi: 10.1146/annurev.phyto.42.040803.140421 CrossRefPubMedGoogle Scholar
  24. Durell SR, Raghunathan G, Guy HR (1992) Modeling the ion channel structure of cecropin. Biophys J 63:1623–1631. doi: 10.1016/S0006-3495(92)81730-7 Google Scholar
  25. Eden-Green S (2004) Focus on bacterial wilt. How can the advance of banana Xanthomonas wilt be halted? Infomusa 13:38–41Google Scholar
  26. Fegan F, Prior P (2004) How complex is the Ralstonia solanacearum species complex. In: Allen C, Prior P, Hayward AC (eds) Bacterial wilt: the disease and Ralstonia solanacearum species complex. APS Press, St PaulGoogle Scholar
  27. Feng JX, Cao L, Li J, Duan CJ, Xue-Mei Luo XM, Le N, Wei H, Liang S, Chu C, Pan Q, Tang JL (2011) Involvement of OsNPR1/NH1 in rice basal resistance to blast fungus Magnaporthe oryzae. Eur J Plant Pathol 131:221–235. doi: 10.1007/s10658-011-9801-7 CrossRefGoogle Scholar
  28. Ganapathi TR, Higgs NS, Balint-Kurti PJ, Arntzen CJ, May GD, Van Eck JM (2001) Agrobacterium-mediated transformation of the embryogenic cell suspensions of the banana cultivars Rasthali (AAB). Plant Cell Rep 20:157–162. doi: 10.1007/s002990000287 CrossRefGoogle Scholar
  29. Gassmann W, Hinsch ME, Staskawicz BJ (1999) The Arabidopsis RPS4 bacterial-resistance gene is a member of the TIR-NBSLRR family of disease-resistance genes. Plant J 20:265–277. doi: 10.1046/j.1365-313X.1999.00600.x CrossRefPubMedGoogle Scholar
  30. Ger MJ, Chen CH, Hwang SY, Huang HE, Podile AR, Dayakar BV, Feng TY (2002) Constitutive expression of Hrap gene in transgenic tobacco plant enhances resistance against virulent bacterial pathogens by induction of a hypersensitive response. MPMI 15:764–773. doi: 10.1094/MPMI.2002.15.8.764 CrossRefPubMedGoogle Scholar
  31. Hibberd AM, Bassett MJ, Stall RE (1987) Allelism tests of three dominant genes for hypersensitive resistance to bacterial spot of pepper. Phytopathology 77:1304–1307. https://www.apsnet.org/publications/phytopathology/backissues/Documents/1987Articles/Phyto77n09_1304.PDF CrossRefGoogle Scholar
  32. Huang Y, Nordeen RO, Di M, Owens LD, McBeth JH (1997) Expression of an engineered cecropin gene cassette in transgenic tobacco plants confers disease resistance to Pseudomonas syringae pv. tabaci. Phytopathology 87:494–499. doi: 10.1094/PHYTO.1997.87.5.494 CrossRefPubMedGoogle Scholar
  33. Huang SN, Chen CH, Lin HJ, Ger MJ, Chen ZI, Feng TY (2004) Plant ferredoxin-like protein AP1 enhances Erwinia induced hypersensitive response of tobacco. Physiol Mol Plant Pathol 64:103–110. doi: 10.1016/j.pmpp.2004.05.005 CrossRefGoogle Scholar
  34. Huang HE, Ger MJ, Chen CY, Pandey AK, Yip MK, Chou HW, Feng TY (2007) Disease resistance to bacterial pathogens affected by the amount of ferredoxin-I protein in plants. Mol Plant Pathol 8:129–137. doi: 10.1111/j.1364-3703.2006.00378.x CrossRefPubMedGoogle Scholar
  35. Hultmark D, Engström Å, Andersson K, Steiner H, Bennich H, Boman HG (1983) Insect immunity: Attacins, a family of antibacterial proteins from Hyalophora cecropia. EMBO J 2:571–576. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC555063/pdf/emboj00257-0090.pdf, http://www.ncbi.nlm.nih.gov/pmc/articles/PMC555063/pdf/emboj00257-0090.pdf PubMedPubMedCentralGoogle Scholar
  36. Kaduno-Okuda K, Taniai K, Kato Y, Kotani E, Yamakaula M (1995) Effects of synthetic Bombyx mori cecropin B on growth of plant pathogenic bacteria. J Invertebr Pathol 65:309–319. doi: 10.1006/jipa.1995.1047 CrossRefGoogle Scholar
  37. Kagezi GH, Kangire A, Tushemereirwe W, Bagamba F, Kikulwe E, Muhangi J, Gold CS, Ragama P (2006) Field assessment of banana bacterial wilt incidence in Uganda. Afr Crop Sci J 14:83–91. doi: 10.4314/acsj.v14i2.27914 Google Scholar
  38. Kawata M, Nakajima T, Yamamoto T, Mori K, Oikawa T, Fukumoto F, Kuroda S (2003) Genetic engineering for disease resistance in rice (Oryza sativa L.) using antimicrobial peptides. Jpn Agric Res Q 37:71–76. https://www.jircas.affrc.go.jp/english/publication/jarq/37-2/37-02-01.pdf CrossRefGoogle Scholar
  39. Keen NT (1999) Plant disease resistance: progress in basic understanding and practical application. Adv Bot Res 30:292–328. doi: 10.1016/S0065-2296(08)60230-X Google Scholar
  40. Keller H, Pamboukdjian N, Ponchet M, Poupet A, Delon R, Verrier JL, Roby D, Ricei P (1999) Pathogen induced elicitin production in transgenic tobacco generates a hypersensitive response and non-specific disease resistance. Plant Cell 11:223–235. doi: 10.1105/tpc.11.2.223 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Khanna H, Becker D, Kleidon J, Dale J (2004) Centrifugation assisted Agrobacterium tumefaciens mediated transformation (CAA) of embryogenic cell suspensions of banana (Musa spp.) Cavendish AAA and Lady Finger AAB. Mol Breed 14:239–252. doi: 10.1023/B:MOLB.0000047771.34186.e8 CrossRefGoogle Scholar
  42. Kim YJ, Lin NC, Martin GB (2002) Two distinct Pseudomonas effector proteins interact with the Pto kinase and activate plant immunity. Cell 109:589–598. doi: 10.1016/S0092-8674(02)00743-2 CrossRefPubMedGoogle Scholar
  43. Ko K (1999) Attacin and T4 lysozyme transgenic ‘Galaxy’ apple: regulation of transgene expression and plant resistance to fire blight (Erwinia amylovora). Ph.D dissertation, Cornell University, New YorkGoogle Scholar
  44. Ko K, Norelli JL, Reynoird JP, Boresjza-Wysocka E, Brown SK, Aldwinckle HS (2000) Effect of untranslated leader sequence of AMV RNA 4 and signal peptide of pathogenesis-related protein 1b on attacin gene expression, and resistance to fire blight in transgenic apple. Biotechnol Lett 22:373–381. doi: 10.1023/A:1005672601625 Google Scholar
  45. Kubiriba J, Tushemereirwe WK (2014) Approaches for the control of banana Xanthomonas wilt in East and Central Africa. Afr J Plant Sci 8(8):398–404. doi: 10.5897/AJPS2013.1106 CrossRefGoogle Scholar
  46. Kubiriba J, Karamura EB, Jogo W, Tushemereirwe WK, Tinzaara W (2012) Community mobilization: a key to effective control of banana Xanthomonas wilt. J Dev Agric Econ 45(5):125–131. doi: 10.5897/JDAE11.098 Google Scholar
  47. Li Q, Lawrence CB, Xing HY, Babbitt RA, Bass WT, Maiti IB, Everett NP (2001) Enhanced disease resistance conferred by expression of an antimicrobial magainin analogue in transgenic tobacco. Planta 212:635–639. doi: 10.1007/s004250000480 CrossRefPubMedGoogle Scholar
  48. Liau CH, Lu JC, Prasad V, Lee JT, Hsiao HH, You SJ, Yang NS, Huang HE, Feng TY, Chen WH, Chan MT (2003) The sweet pepper ferredoxin-like protein (pflp) conferred resistance against soft rot disease in Oncidium orchid. Transgenic Res 12:329–336. doi: 10.1023/A:1023343620729 CrossRefPubMedGoogle Scholar
  49. Lin HJ, Cheng HY, Chen CH, Huang HC, Feng TY (1997) Plant amphipathic proteins delay the hypersensitive response caused by harpinPss and Pseudomonas syringae pv. syringae. Physiol Mol Plant Pathol 51:367–376. doi: 10.1006/pmpp.1997.0121 CrossRefGoogle Scholar
  50. Martin GB, Brommonschenkel SH, Chunwongse J, Frary A, Ganal MW, Spivey R, Wu T, Earle ED, Tanksley SD (1993) Map-based cloning of a protein kinase gene conferring disease resistance in tomato. Science 262:1432–1436. doi: 10.1126/science.7902614 CrossRefPubMedGoogle Scholar
  51. Mehdy MC (1994) Active oxygen species in plant defense against pathogens. Plant Physiol 105:467–472. doi: 10.1104/pp.105.2.467 CrossRefPubMedPubMedCentralGoogle Scholar
  52. Mentag R, Lukevich M, Morency MJ, Seguin A (2003) Bacterial disease resistance of transgenic hybrid poplar expressing the synthetic antimicrobial peptide D4E1. Tree Physiol 23:405–411. doi: 10.1093/treephys/23.6.405 CrossRefPubMedGoogle Scholar
  53. Minsavage GV, Dahlbeck D, Whalen MC, Kearney B, Bonas U, Stasawicz BJ, Stall R (1990) Gene for gene relationships specifying disease resistance in Xanthomonas campestris pv. vesicatoria-pepper interactions. MPMI 3:41–47. doi: 10.1094/MPMI-3-041 CrossRefGoogle Scholar
  54. Molina A, Ahl Goy P, Fraile A, Sanchez-Monge R, Garcia-Olmedo F (1993) Inhibition of bacterial and fungal pathogens by thionins of types I and II. Plant Sci 92:169–177. doi: 10.1046/j.1365-313X.1997.00669.x CrossRefGoogle Scholar
  55. Muhangi J, Nankinga C, Tushemereirwe WK, Rutherfold M, Ragama P, Nowakunda K, Abeyasekera S (2006) Impact of awareness campaigns for banana bacterial wilt in Uganda. Afr Crop Sci J 14(2):175–183. doi: 10.4314/acsj.v14i2.27925 Google Scholar
  56. Mwebaze JM, Tusiime G, Tushmereirwe WK, Kubiriba J (2006) The survival of Xanthomonas campestris pv. musacearum in soil and plant debris. Afr Crop Sci J 14:121–127. doi: 10.4314/acsj.v14i2.46166 Google Scholar
  57. Mysore KS, D’Ascenzo MD, He X, Martin GB (2003) Overexpression of the disease resistance gene Pto in tomato induces gene expression changes similar to immune responses in human and fruitfly. Plant Physiol 132:1901–1912. doi: 10.1104/pp.103.022731 CrossRefPubMedPubMedCentralGoogle Scholar
  58. Namukwaya B, Tripathi L, Tripathi JN, Arinaitwe G, Mukasa SB, Tushemereirwe WK (2012) Transgenic banana expressing Pflp gene confers enhanced resistance to Xanthomonas wilt disease. Transgenic Res 4:855–865. doi: 10.1007/s11248-011-9574-y CrossRefGoogle Scholar
  59. Ndungo V, Eden-Green S, Blomme G, Crozier J, Smith J (2006) Presence of banana Xanthomonas wilt (Xanthomonas campestris pv. musacearum) in the Democratic Republic of Congo (DRC). Plant Pathol 55:294. doi: 10.1111/j.1365-3059.2005.01258.x CrossRefGoogle Scholar
  60. Nordeen RO, Sinden SL, Jaynes JM, Owens LD (1992) Activity of cecropin SB37 against protoplasts from several plant species and their bacterial pathogens. Plant Sci 82:101–107. doi: 10.1016/0168-9452(92)90012-B CrossRefGoogle Scholar
  61. Norelli JL, Mills JZ, Momol MT, Aldwinkle HS (1998) Effect of cercropin-type transgenes on fire blight resistance of apple. Acta Hortic 489:273–278. doi:10.17660/ActaHortic.1999.489.47Google Scholar
  62. Norelli JL, Borejsza-Wysocka E, Momol MT, Mills JZ, Grethel A, Alkwinckle HS, Ko K, Brown SK, Bauer DW, Beer SV, Abdul-Kader AM, Hanke V (1999) Genetic transformation for fire blight resistance in apple. Acta Hortic 489:295–296. doi:10.17660/ActaHortic.1999.489.50Google Scholar
  63. Pandey AK, Ger MJ, Huang HE, Yip MK, Zeng J, Feng TY (2005) Expression of the hypersensitive response-assisting protein in Arabidopsis results in harpin-dependent hypersensitive cell death in response to Erwinia carotovora. Plant Mol Biol 59:771–780. doi: 10.1007/s11103-005-1002-3 CrossRefPubMedGoogle Scholar
  64. Quilis J, Penas G, Messeguer J, Brugidou C, Segundo BS (2008) The Arabidopsis AtNPR1 inversely modulates defence responses against fungal, bacterial, or viral pathogens while conferring hypersensitivity to abiotic stress in transgenic rice. MPMI 21:1215–1231. doi: 10.1094/MPMI-21-9-1215 CrossRefPubMedGoogle Scholar
  65. Rajasekaran K, Stromberg KD, Cary JW, Cleveland TE (2001) Broad-spectrum antimicrobial activity in vitro of the synthetic peptide D4E1. J Agric Food Chem 49:2799–2803. doi: 10.1021/jf010154d CrossRefPubMedGoogle Scholar
  66. Reeder R, Opolot O, Muhinyuza J, Aritua A, Crozier J, Smith J (2007) Presence of banana bacterial wilt (Xanthomonas campestris pv. musacearum) in Rwanda. New Dis Rep 14:52. doi: 10.1111/j.1365-3059.2007.01640.x Google Scholar
  67. Reynoird JP, Mourgues F, Norelli JL, Aldwinckle HS, Brisset MN, Chevreau E (1999) First evidence for improved resistance to fire blight in transgenic pear expressing the attacin E gene from Hyalophora cecropia. Plant Sci 149:23–31. doi: 10.1016/S0168-9452(99)00139-9 CrossRefGoogle Scholar
  68. Rommens CM, Kishore GM (2000) Exploiting the full potential of disease-resistance genes for agricultural use. Curr Opin Biotechnol 11:120–125. doi: 10.1016/S0958-1669(00)00083-5 CrossRefPubMedGoogle Scholar
  69. Ronald PC, Albano B, Tabien R, Abenes L, Wu K, McCouch S, Tanksley SD (1992) Genetic and physical analysis of the rice bacterial blight disease resistance locus, Xa21. Mol Gen Genet 236:113–120. doi: 10.1007/BF00279649 PubMedGoogle Scholar
  70. Sagi L, Panis B, Remy S, Schoofs H, De Smet K, Swennen R, Cammue B (1995) Genetic transformation of banana (Musa spp.) via particle bombardment. Bio Technol 13:481–485. doi: 10.1038/nbt0595-481 Google Scholar
  71. Sekiwoko F, Taligoola HK, Tushemereirwe WK (2006) Xanthomonas campestris pv musacearum host range in Uganda. Afr Crop Sci J 14:111–120. doi: 10.4314/acsj.v14i2.46165 Google Scholar
  72. Sequeira L (1998) The missing element in international banana improvement programs. In: Prior P, Allen C, Elphinstone J (eds) Bacterial wilt disease: molecular and ecological aspect. Springer, BerlinGoogle Scholar
  73. Sherwood SG (1997) Little things mean a lot: working with central American farmers to address the mystery of plant diseases. Agric Hum Values 14:181–189. doi: 10.1023/A:1007383508503 CrossRefGoogle Scholar
  74. Song WY, Wang GL, Chen LL, Kim HS, Pi LY, Holsten T, Gardner J, Holsten T, Wang B, Zhai WX, Zhu LH, Ronald P (1995) A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21. Science 270:1804–1806. doi: 10.1111/j.1467-7652.2007.00243.x CrossRefPubMedGoogle Scholar
  75. Swanson J, Kearney B, Dahlbeck D, Staskawicz BJ (1988) Cloned avirulence gene of Xanthomonas campestris pv. vesicatoria complements spontaneous race change mutant. MPMI 1:5–9. doi: 10.1094/MPMI-1-005 CrossRefGoogle Scholar
  76. Tai TH, Dahlbeck D, Clark ET, Gajiwala P, Pasion R, Whalen MC, Stall RE, Staskawicz BJ (1999) Expression of the Bs2 pepper gene confers resistance to bacterial spot disease in tomato. Proc Natl Acad Sci U S A 23:14153–14158. doi: 10.1073/pnas.96.24.14153 CrossRefGoogle Scholar
  77. Tang K, Sun X, Hu Q, Wu A, Lin CH, Lin HJ, Twyman RM, Christou P, Feng TY (2001) Transgenic rice plants expressing the ferredoxin-like protein (AP1) from sweet pepper show enhanced resistance to Xanthomonas oryzae pv. oryzae. Plant Sci 160:1035–1042. doi: 10.1016/S0168-9452(01)00351-X CrossRefPubMedGoogle Scholar
  78. Thwaites R, Eden-Green S, Black R (2000) Diseases caused by bacteria. In: Jones DR (ed) Diseases of banana, abaca and enset. CABI Publishing, WallingfordGoogle Scholar
  79. Tinzaara W, Gold CS, Ssekiwoko F, Tushemereirwe W, Bandyopadhyay R, Abera A, Eden-Green S (2006) The possible role of insects in the transmission of banana Xanthomonas wilt. Afr Crop Sci J 14:105–110. doi: 10.4314/acsj.v14i2.27916 Google Scholar
  80. Tripathi L, Tripathi JN, Tushemereirwe WK, Bandyopadhyay R (2007) Development of a semi-selective medium for isolation of Xanthomonas campestris pv. musacearum from banana plants. Eur J Plant Pathol 117:177–186. doi: 10.1007/s10658-006-9083-7 CrossRefGoogle Scholar
  81. Tripathi L, Odipio J, Tripathi JN, Tusiime G (2008) A rapid technique for screening banana cultivars for resistance to Xanthomonas wilt. Eur J Plant Pathol 121:9–19. doi: 10.1007/s10658-007-9235-4 CrossRefGoogle Scholar
  82. Tripathi L, Mwangi M, Abele S, Aritua V, Tushemereirwe WK, Bandyopadhyay R (2009) A threat to banana production in east and central Africa. Plant Dis 93:440–451. doi: 10.1094/PDIS-93-5-0440 CrossRefGoogle Scholar
  83. Tripathi L, Mwaka H, Tripathi JN, Tushemereirwe WK (2010) Expression of sweet pepper Hrap gene in banana enhances resistance to Xanthomonas campestris pv. musacearum. Mol Plant Pathol 11:721–731. doi: 10.1111/J.1364-3703.2010.00639.X PubMedGoogle Scholar
  84. Tripathi J, Muwonge A, Tripathi L (2012) Highly efficient regeneration and transformation protocol for plantain cv. ‘Gonja Manjaya’ (Musa spp. AAB) using embryogenic cell suspension. In Vitro Cell Dev Biol Anim 48:216–224. doi: 10.1007/s11627-011-9422-z CrossRefGoogle Scholar
  85. Tripathi JN, Lorenzen J, Bahar O, Ronald P, Tripathi L (2014a) Transgenic expression of the rice Xa21 pattern-recognition receptor in banana (Musa sp.) confers resistance to Xanthomonas campestris pv. musacearum. Plant Biotech J 12:663–673. doi: 10.1111/pbi.12170 CrossRefGoogle Scholar
  86. Tripathi L, Tripathi JN, Kiggundu A, Korie S, Shotkoski F, Tushemereirwe WK (2014b) Field trial of Xanthomonas wilt disease-resistant bananas in East Africa. Nat Biotechnol 32(9):868–870. doi: 10.1038/nbt.3007 CrossRefPubMedGoogle Scholar
  87. Tripathi JN, Oduor RO, Tripathi L (2015) A high-throughput regeneration and transformation platform for production of genetically modified banana. Front Plant Sci 6:1025. doi: 10.3389/fpls.2015.01025 PubMedPubMedCentralGoogle Scholar
  88. Trudel J, Potvin C, Asselin A (1995) Secreted hen lysozyme in transgenic tobacco: recovery of bound enzyme and in vitro growth inhibition of plant pathogens. Plant Sci 106:55–62. doi: 10.1016/0168-9452(95)04069-7 CrossRefGoogle Scholar
  89. Tushemereirwe WK, Kangire A, Ssekiwoko F (2004) First report of Xanthomonas campestris pv. musacearum on banana in Uganda. Plant Pathol 53:802. doi: 10.1111/j.1365-3059.2004.01090.x CrossRefGoogle Scholar
  90. Tushemereirwe WK, Okaasai O, Kubiriba J, Nankinga C, Muhangi J, Odoi N, Opio F (2006) Status of banana bacterial wilt in Uganda. Afr Crop Sci J 14(2):73–82. doi: 10.4314/acsj.v14i2.27913 Google Scholar
  91. Wang GL, Song WY, Ruan DL, Sideris S, Ronald PC (1996) The cloned gene, Xa21, confers resistance to multiple Xanthomonas oryzae pv. Oryzae isolates in transgenic plants. MPMI 9:850–855. doi: 10.1094/MPMI-9-0850 CrossRefPubMedGoogle Scholar
  92. Wasukira A, Tayebwa J, Thwaites R, Paszkiewicz K, Aritua V, Kubiriba J, Smith J, Grant M, Studholme DJ (2012) Genome-wide sequencing reveals two major sub-lineages in the genetically monomorphic pathogen Xanthomonas campestris pathovar musacearum. Genes 3:361–377. doi: 10.3390/genes3030361 CrossRefPubMedPubMedCentralGoogle Scholar
  93. Xie Z, Chen Z (2000) Harpin-induced hypersensitive cell death is associated with altered mitochondrial functions in tobacco cells. MPMI 13:183–190. doi: 10.1094/MPMI.2000.13.2.183 CrossRefPubMedGoogle Scholar
  94. Yip MK, Huang HE, Ger MJ, Chiu SH, Tsai YC, Lin CI, Feng TY (2007) Production of soft rot resistant calla lily by expressing a ferredoxin-like protein gene (pflp) in transgenic plants. Plant Cell Rep 26:449–457. doi: 10.1007/s00299-006-0246-y CrossRefPubMedGoogle Scholar
  95. Yirgou D, Bradbury JF (1968) Bacterial wilt of enset (Ensete ventricosum) incited by Xanthomonas musacearum sp. nov. Phytopathology 58:111–112Google Scholar
  96. Yirgou D, Bradbury JF (1974) A note on wilt of banana caused by the enset wilt organism Xanthomonas musacearum. East Afr Agric For J 40:111–114Google Scholar
  97. Yoshimura S, Yamanouchi U, Katayose Y, Toki S, Wang ZX, Kono I, Kurata N, Yano M, Iwata N, Sasaki T (1998) Expression of Xa1, a bacterial blight-resistance gene in rice, is induced by bacterial inoculation. Proc Natl Acad Sci U S A 95:1663–1668. http://www.pnas.org/content/95/4/1663.full.pdf?sid=7aec7fc7-83c9-474c-8c99-d8920f7a97e8 CrossRefPubMedPubMedCentralGoogle Scholar
  98. Young JM, Bradbury JF, Davis RE, Dickey RS, Ercolani GL, Haywood AC, Vidaver AK (1991) Nomenclature revisions of plant pathogenic bacteria and list of names 1980–1988. Rev Plant Pathol 70:211–221. http://www.cabdirect.org/ Google Scholar
  99. Yuan Y, Zhong S, Li Q, Zhu Z, Lou Y, Wang L, Wang J, Wang M, Li Q, Yang D, He Z (2007) Functional analysis of rice NPR1-like genes reveals that OsNPR1NH1 is the rice orthologue conferring disease resistance with enhanced herbivore susceptibility. Plant Biotechnol J 5:313–324. doi: 10.1111/j.1467-7652.2007.00243.x CrossRefPubMedGoogle Scholar
  100. Zasloff M (1987) Magainins, a class of antimicrobial peptides from Xenopus skin: isolation, characterization of two active forms and partial cDNA sequence of a precursor. Proc Natl Acad Sci USA 84:5449–5453. doi:pnas00330-0371Google Scholar
  101. Zhao B, Lin X, Poland J, Trick H, Leach J, Hulbet S (2005) A maize resistance gene functions against bacterial streak disease in rice. Proc Natl Acad Sci U S A 43:15383–15388. doi: 10.1073/pnas.0503023102 Google Scholar

Copyright information

© Springer Science+Business Media Singapore 2016

Authors and Affiliations

  • Leena Tripathi
    • 1
    Email author
  • Jaindra Nath Tripathi
    • 1
  • Jerome Kubiriba
    • 2
  1. 1.International Institute of Tropical Agriculture (IITA)NairobiKenya
  2. 2.National Agricultural Research Laboratories (NARL)KampalaUganda

Personalised recommendations