Medical Imaging Informatics

  • William Hsu
  • Suzie El-Saden
  • Ricky K. TairaEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 939)


Imaging is one of the most important sources of clinically observable evidence that provides broad coverage, can provide insight on low-level scale properties, is noninvasive, has few side effects, and can be performed frequently. Thus, imaging data provides a viable observable that can facilitate the instantiation of a theoretical understanding of a disease for a particular patient context by connecting imaging findings to other biologic parameters in the model (e.g., genetic, molecular, symptoms, and patient survival). These connections can help inform their possible states and/or provide further coherent evidence. The field of radiomics is particularly dedicated to this task and seeks to extract quantifiable measures wherever possible. Example properties of investigation include genotype characterization, histopathology parameters, metabolite concentrations, vascular proliferation, necrosis, cellularity, and oxygenation. Important issues within the field include: signal calibration, spatial calibration, preprocessing methods (e.g., noise suppression, motion correction, and field bias correction), segmentation of target anatomic/pathologic entities, extraction of computed features, and inferencing methods connecting imaging features to biological states.


Radiomics Radiogenomics Magnetic resonance imaging Glioblastoma multiforme Quantitative imaging Imaging standards Imaging informatics 



The authors would like to thank the following medical imaging informatics doctoral students for their valuable intellectual contributions to this chapter: Nova Smedley, Nicholas J. Matiasz, Edgar Rios Piedra, and King Chung (Johnny) Ho. We would also like to thank Lew Andrada for his proofreading and general editing services.


  1. 1.
    Aerts HJ, Velazquez ER, Leijenaar RT, Parmar C, Grossmann P, Carvalho S, Bussink J, Monshouwer R, Haibe-Kains B, Rietveld D, et al. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun. 2014;5:4006.PubMedPubMedCentralGoogle Scholar
  2. 2.
    Aghi M, Gaviani P, Henson JW, Batchelor TT, Louis DN, Barker 2nd FG. Magnetic resonance imaging characteristics predict epidermal growth factor receptor amplification status in glioblastoma. Clin Cancer Res. 2005;11(24 Pt 1):8600–5.PubMedCrossRefGoogle Scholar
  3. 3.
    Aktipis CA, Boddy AM, Gatenby RA, Brown JS, Maley CC. Life history trade-offs in cancer evolution. Nat Rev Cancer. 2013;13(12):883–92.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Alic L, Niessen WJ, Veenland JF. Quantification of heterogeneity as a biomarker in tumor imaging: a systematic review. PLoS One. 2014;9(10):e110300.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Altomare DA, Testa JR. Perturbations of the AKT signaling pathway in human cancer. Oncogene. 2005;24(50):7455–64.PubMedCrossRefGoogle Scholar
  6. 6.
    Amadasun M, King R. Textural features corresponding to textural properties. IEEE Trans Syst Man Cybernet. 1989;19:1264–73.CrossRefGoogle Scholar
  7. 7.
    Amberger-Murphy V. Hypoxia helps glioma to fight therapy. Curr Cancer Drug Targets. 2009;9(3):381–90.PubMedCrossRefGoogle Scholar
  8. 8.
    Andriole KP, Morin RL, Arenson RL, Carrino JA, Erickson BJ, Horii SC, Piraino DW, Reiner BI, Seibert JA, Siegel E, et al. Addressing the coming radiology crisis-the Society for Computer Applications in Radiology transforming the radiological interpretation process (TRIP) initiative. J Digit Imaging. 2004;17(4):235–43.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Arnold CW, Wallace WD, Chen S, Oh A, Abtin F, Genshaft S, Binder S, Aberle D, Enzmann D. RadPath: a web-based system for integrating and correlating radiology and pathology findings during cancer diagnosis. Acad Radiol. 2016;23(1):90–100.PubMedCrossRefGoogle Scholar
  10. 10.
    Asari S, Makabe T, Katayama S, Itoh T, Tsuchida S, Ohmoto T. Assessment of the pathological grade of astrocytic gliomas using an MRI score. Neuroradiology. 1994;36(4):308–10.PubMedCrossRefGoogle Scholar
  11. 11.
    Assaf Y, Pasternak O. Diffusion tensor imaging (DTI)-based white matter mapping in brain research: a review. J Mol Neurosci. 2008;34(1):51–61.PubMedCrossRefGoogle Scholar
  12. 12.
    Athanasiou LS, Rigas G, Sakellarios A, Bourantas CV, Stefanou K, Fotiou E, Exarchos TP, Siogkas P, Naka KK, Parodi O, et al. Error propagation in the characterization of atheromatic plaque types based on imaging. Comput Methods Programs Biomed. 2015;121(3):161–74.PubMedCrossRefGoogle Scholar
  13. 13.
    Baehring JM, Bi WL, Bannykh S, Piepmeier JM, Fulbright RK. Diffusion MRI in the early diagnosis of malignant glioma. J Neurooncol. 2007;82(2):221–5.PubMedCrossRefGoogle Scholar
  14. 14.
    Bagherzadeh-Khiabani F, Ramezankhani A, Azizi F, Hadaegh F, Steyerberg EW, Khalili D. A tutorial on variable selection for clinical prediction models: feature selection methods in data mining could improve the results. J Clin Epidemiol. 2016;71:76–85.PubMedCrossRefGoogle Scholar
  15. 15.
    Bammer R. Basic principles of diffusion-weighted imaging. Eur J Radiol. 2003;45(3):169–84.PubMedCrossRefGoogle Scholar
  16. 16.
    Barajas Jr RF, Hodgson JG, Chang JS, Vandenberg SR, Yeh RF, Parsa AT, McDermott MW, Berger MS, Dillon WP, Cha S. Glioblastoma multiforme regional genetic and cellular expression patterns: influence on anatomic and physiologic MR imaging. Radiology. 2010;254(2):564–76.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Barajas Jr RF, Phillips JJ, Parvataneni R, Molinaro A, Essock-Burns E, Bourne G, Parsa AT, Aghi MK, McDermott MW, Berger MS, et al. Regional variation in histopathologic features of tumor specimens from treatment-naive glioblastoma correlates with anatomic and physiologic MR Imaging. Neuro Oncol. 2012;14(7):942–54.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Basser PJ, Pajevic S, Pierpaoli C, Duda J, Aldroubi A. In vivo fiber tractography using DT-MRI data. Magn Reson Med. 2000;44(4):625–32.PubMedCrossRefGoogle Scholar
  19. 19.
    Beg MF, Miller MI, Trouve A, Younes L. Computing large deformation metric mappings via geodesic flows of diffeomorphisms. Int J Comput Vision. 2005;61(2):139–57.CrossRefGoogle Scholar
  20. 20.
    Bengio Y, Courville A, Vincent P. Representation learning: a review and new perspectives. IEEE Trans Pattern Anal Mach Intell. 2013;35(8):1798–828.PubMedCrossRefGoogle Scholar
  21. 21.
    Bergeest JJ. A comparison of five methods for signal intensity standardization in MRI. In: Tolxdorff B, Deserno H, Horsch M, editors. Bildverarbeitung für die Medizin (Bildverarbeitung für die Medizin 2008, Algorithmen, Systeme, Anwendungen, Proceedings des Workshops vom 6. bis 8., 2008). Berlin: Springer; 2008.Google Scholar
  22. 22.
    Berlin L. Radiologic errors and malpractice: a blurry distinction. AJR Am J Roentgenol. 2007;189(3):517–22.PubMedCrossRefGoogle Scholar
  23. 23.
    Biggs N. Algebraic graph theory. 2nd ed. Cambridge mathematical library. Cambridge: Cambridge University Press. 1993. vi, 205 p.Google Scholar
  24. 24.
    Boland MR, Hripcsak G, Shen Y, Chung WK, Weng C. Defining a comprehensive verotype using electronic health records for personalized medicine. J Am Med Inform Assoc. 2013;20(e2):e232–8.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Boland GW, Duszak Jr R, McGinty G, Allen Jr B. Delivery of appropriateness, quality, safety, efficiency and patient satisfaction. J Am Coll Radiol. 2014;11(1):7–11.PubMedCrossRefGoogle Scholar
  26. 26.
    Brady A, Laoide RO, McCarthy P, McDermott R. Discrepancy and error in radiology: concepts, causes and consequences. Ulster Med J. 2012;81(1):3–9.PubMedPubMedCentralGoogle Scholar
  27. 27.
    Breiman L. Random forests. Mach Learn. 2001;45(1):5–32.CrossRefGoogle Scholar
  28. 28.
    Brenner DJ, Hall EJ. Computed tomography--an increasing source of radiation exposure. N Engl J Med. 2007;357(22):2277–84.PubMedCrossRefGoogle Scholar
  29. 29.
    Brynolfsson P, Nilsson D, Henriksson R, Hauksson J, Karlsson M, Garpebring A, Birgander R, Trygg J, Nyholm T, Asklund T. ADC texture – an imaging biomarker for high-grade glioma? Med Phys. 2014;41(10):101903.PubMedCrossRefGoogle Scholar
  30. 30.
    Buckler AJ, Bresolin L, Dunnick NR, Sullivan DC, Group. A collaborative enterprise for multi-stakeholder participation in the advancement of quantitative imaging. Radiology. 2011;258(3):906–14.PubMedCrossRefGoogle Scholar
  31. 31.
    Buckler AJ, Paik D, Ouellette M, Danagoulian J, Wernsing G, Suzek BE. A novel knowledge representation framework for the statistical validation of quantitative imaging biomarkers. J Digit Imaging. 2013;26(4):614–29.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Bui AA, Hsu W, Arnold C, El-Saden S, Aberle DR, Taira RK. Imaging-based observational databases for clinical problem solving: the role of informatics. J Am Med Inform Assoc. 2013;20(6):1053–8.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Bulik M, Jancalek R, Vanicek J, Skoch A, Mechl M. Potential of MR spectroscopy for assessment of glioma grading. Clin Neurol Neurosurg. 2013;115(2):146–53.PubMedCrossRefGoogle Scholar
  34. 34.
    Bushberg JT. The essential physics of medical imaging. 3rd ed. Philadelphia: Wolters Kluwer Health/Lippincott Williams & Wilkins; 2012. p. xii. 1030 p.Google Scholar
  35. 35.
    Cancer Genome Atlas Research Network. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature. 2008;455(7216):1061–8.CrossRefGoogle Scholar
  36. 36.
    Cao Y, Li D, Shen Z, Normolle D. Sensitivity of quantitative metrics derived from DCE MRI and a pharmacokinetic model to image quality and acquisition parameters. Acad Radiol. 2010;17(4):468–78.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Chen R, Snyder M. Promise of personalized omics to precision medicine. Wiley Interdiscip Rev Syst Biol Med. 2013;5(1):73–82.PubMedCrossRefGoogle Scholar
  38. 38.
    Chen W, Giger ML, Li H, Bick U, Newstead GM. Volumetric texture analysis of breast lesions on contrast-enhanced magnetic resonance images. Magn Reson Med. 2007;58(3):562–71.PubMedCrossRefGoogle Scholar
  39. 39.
    Chinot OL, Macdonald DR, Abrey LE, Zahlmann G, Kerloeguen Y, Cloughesy TF. Response assessment criteria for glioblastoma: practical adaptation and implementation in clinical trials of antiangiogenic therapy. Curr Neurol Neurosci Rep. 2013;13(5):347.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Chow KL, Gobin YP, Cloughesy T, Sayre JW, Villablanca JP, Vinuela F. Prognostic factors in recurrent glioblastoma multiforme and anaplastic astrocytoma treated with selective intra-arterial chemotherapy. AJNR Am J Neuroradiol. 2000;21(3):471–8.PubMedGoogle Scholar
  41. 41.
    Cohen AL, Holmen SL, Colman H. IDH1 and IDH2 mutations in gliomas. Curr Neurol Neurosci Rep. 2013;13(5):345.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Cootes TF, Taylor CJ. Anatomical statistical models and their role in feature extraction. Br J Radiol. 2004;77(Spec No 2):S133–9.Google Scholar
  43. 43.
    Cordova JS, Shu HG, Liang Z, Gurbani SS, Cooper LA, Holder CA, Olson JJ, Kairdolf B, Schreibmann E, Neill SG et al. Whole-brain spectroscopic MRI biomarkers identify infiltrating margins in glioblastoma patients. Neuro Oncol. 2016;18(8):1180–9.Google Scholar
  44. 44.
    Cristini V, Frieboes HB, Gatenby R, Caserta S, Ferrari M, Sinek J. Morphologic instability and cancer invasion. Clin Cancer Res. 2005;11(19 Pt 1):6772–9.PubMedCrossRefGoogle Scholar
  45. 45.
    Curry III TS, Dowdey JE, Murry Jr RC. Christensen’s physics of diagnostic radiology. 4th ed. Philadelphia: Lippincott Williams and Wilkins; 1990.Google Scholar
  46. 46.
    Dai XL, Khorram S. A feature-based image registration algorithm using improved chain-code representation combined with invariant moments. IEEE Trans Geosci Remote Sens. 1999;37(5):2351–62.CrossRefGoogle Scholar
  47. 47.
    Daianu M, Jahanshad N, Nir TM, Toga AW, Jack Jr CR, Weiner MW, Thompson PM, Alzheimer’s Disease Neuroimaging Initiative. Breakdown of brain connectivity between normal aging and Alzheimer’s disease: a structural k-core network analysis. Brain Connect. 2013;3(4):407–22.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Dalla Palma L, Stacul F, Meduri S, Geitung JT. Relationships between radiologists and clinicians: results from three surveys. Clin Radiol. 2000;55(8):602–5.PubMedCrossRefGoogle Scholar
  49. 49.
    Davnall F, Yip CS, Ljungqvist G, Selmi M, Ng F, Sanghera B, Ganeshan B, Miles KA, Cook GJ, Goh V. Assessment of tumor heterogeneity: an emerging imaging tool for clinical practice? Insights Imaging. 2012;3(6):573–89.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    de la Rocha AM, Sampron N, Alonso MM, Matheu A. Role of SOX family of transcription factors in central nervous system tumors. Am J Cancer Res. 2014;4(4):312–24.PubMedPubMedCentralGoogle Scholar
  51. 51.
    Dean BL, Drayer BP, Bird CR, Flom RA, Hodak JA, Coons SW, Carey RG. Gliomas: classification with MR imaging. Radiology. 1990;174(2):411–15.PubMedCrossRefGoogle Scholar
  52. 52.
    del Sol A, Balling R, Hood L, Galas D. Diseases as network perturbations. Curr Opin Biotechnol. 2010;21:566–71.PubMedCrossRefGoogle Scholar
  53. 53.
    Delude CM. Deep phenotyping: the details of disease. Nature. 2015;527(7576):S14–15.PubMedCrossRefGoogle Scholar
  54. 54.
    Dempsey MF, Condon BR, Hadley DM. Measurement of tumor “size” in recurrent malignant glioma: 1D, 2D, or 3D? AJNR Am J Neuroradiol. 2005;26(4):770–6.PubMedGoogle Scholar
  55. 55.
    Deoni SC, Rutt BK, Peters TM. Rapid combined T1 and T2 mapping using gradient recalled acquisition in the steady state. Magn Reson Med. 2003;49(3):515–26.PubMedCrossRefGoogle Scholar
  56. 56.
    Diehn M, Nardini C, Wang DS, McGovern S, Jayaraman M, Liang Y, Aldape K, Cha S, Kuo MD. Identification of noninvasive imaging surrogates for brain tumor gene-expression modules. Proc Natl Acad Sci U S A. 2008;105(13):5213–18.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Dietrich O, Biffar A, Baur-Melnyk A, Reiser MF. Technical aspects of MR diffusion imaging of the body. Eur J Radiol. 2010;76(3):314–22.PubMedCrossRefGoogle Scholar
  58. 58.
    Dominietto M, Lehmann S, Keist R, Rudin M. Pattern analysis accounts for heterogeneity observed in MRI studies of tumor angiogenesis. Magn Reson Med. 2013;70(5):1481–90.PubMedCrossRefGoogle Scholar
  59. 59.
    Dreze M, Charloteaux B, Milstein S, Vidalain PO, Yildirim MA, Zhong Q, Svrzikapa N, Romero V, Laloux G, Brasseur R, et al. ‘Edgetic’ perturbation of a C. elegans BCL2 ortholog. Nat Methods. 2009;6(11):843–9.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Duda RO, Hart PE, Stork DG. Pattern Classification. 2nd ed. New York: John Wiley & Sons; 2001. 654 p.Google Scholar
  61. 61.
    El Naqa I, Grigsby P, Apte A, Kidd E, Donnelly E, Khullar D, Chaudhari S, Yang D, Schmitt M, Laforest R, et al. Exploring feature-based approaches in PET images for predicting cancer treatment outcomes. Pattern Recognit. 2009;42(6):1162–71.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Ellingson BM, Kim E, Woodworth DC, Marques H, Boxerman JL, Safriel Y, McKinstry RC, Bokstein F, Jain R, Chi TL, et al. Diffusion MRI quality control and functional diffusion map results in ACRIN 6677/RTOG 0625: a multicenter, randomized, phase II trial of bevacizumab and chemotherapy in recurrent glioblastoma. Int J Oncol. 2015;46(5):1883–92.PubMedPubMedCentralGoogle Scholar
  63. 63.
    El-Naqa I, Yang Y, Galatsanos NP, Nishikawa RM, Wernick MN. A similarity learning approach to content-based image retrieval: application to digital mammography. IEEE Trans Med Imaging. 2004;23(10):1233–44.PubMedCrossRefGoogle Scholar
  64. 64.
    Essig M, Shiroishi MS, Nguyen TB, Saake M, Provenzale JM, Enterline D, Anzalone N, Dorfler A, Rovira A, Wintermark M, et al. Perfusion MRI: the five most frequently asked technical questions. Am J Roentgenol. 2013;200(1):24–34.CrossRefGoogle Scholar
  65. 65.
    Evans WE, Relling MV. Pharmacogenomics: translating functional genomics into rational therapeutics. Science. 1999;286(5439):487–91.PubMedCrossRefGoogle Scholar
  66. 66.
    Fan X, Khaki L, Zhu TS, Soules ME, Talsma CE, Gul N, Koh C, Zhang J, Li YM, Maciaczyk J, et al. NOTCH pathway blockade depletes CD133-positive glioblastoma cells and inhibits growth of tumor neurospheres and xenografts. Stem Cells. 2010;28(1):5–16.PubMedPubMedCentralGoogle Scholar
  67. 67.
    Fleishman GM, Gutman BA, Fletcher PT, Thompson PM. Simultaneous longitudinal registration with group-wise similarity prior. Inf Process Med Imaging. 2015;24:746–57.PubMedGoogle Scholar
  68. 68.
    Furnari FB, Fenton T, Bachoo RM, Mukasa A, Stommel JM, Stegh A, Hahn WC, Ligon KL, Louis DN, Brennan C, et al. Malignant astrocytic glioma: genetics, biology, and paths to treatment. Genes Dev. 2007;21(21):2683–710.PubMedCrossRefGoogle Scholar
  69. 69.
    Gagliardi AR, Wright FC, Davis D, McLeod RS, Urbach DR. Challenges in multidisciplinary cancer care among general surgeons in Canada. BMC Med Inform Decis Mak. 2008;8:59.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Gallagher FA. An introduction to functional and molecular imaging with MRI. Clin Radiol. 2010;65(7):557–66.PubMedCrossRefGoogle Scholar
  71. 71.
    Garcia-Figueiras R, Padhani AR, Beer AJ, Baleato-Gonzalez S, Vilanova JC, Luna A, Oleaga L, Gomez-Caamano A, Koh DM. Imaging of tumor angiogenesis for radiologists – Part 1: biological and technical basis. Curr Probl Diagn Radiol. 2015;44(5):407–24.PubMedCrossRefGoogle Scholar
  72. 72.
    Garcia-Figueiras R, Padhani AR, Baleato-Gonzalez S. Therapy monitoring with functional and molecular MR imaging. Magn Reson Imaging Clin N Am. 2016;24(1):261–88.PubMedCrossRefGoogle Scholar
  73. 73.
    Gauberti M, Montagne A, Quenault A, Vivien D. Molecular magnetic resonance imaging of brain-immune interactions. Front Cell Neurosci. 2014;8:389.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Gerstner ER, Frosch MP, Batchelor TT. Diffusion magnetic resonance imaging detects pathologically confirmed, nonenhancing tumor progression in a patient with recurrent glioblastoma receiving bevacizumab. J Clin Oncol. 2010;28(6):e91–3.PubMedCrossRefGoogle Scholar
  75. 75.
    Gilad AA, Winnard Jr PT, van Zijl PC, Bulte JW. Developing MR reporter genes: promises and pitfalls. NMR Biomed. 2007;20(3):275–90.PubMedCrossRefGoogle Scholar
  76. 76.
    Gillies RJ, Kinahan PE, Hricak H. Radiomics: images are more than pictures, they are data. Radiology. 2016;278(2):563–77.PubMedCrossRefGoogle Scholar
  77. 77.
    Goldhirsch A, Wood WC, Coates AS, Gelber RD, Thurlimann B, Senn HJ, Panel members. Strategies for subtypes-dealing with the diversity of breast cancer: Highlights of the St. Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2011. Ann Oncol. 2011;22(8):1736–47.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Goldman AW, Burmeister Y, Cesnulevicius K, Herbert M, Kane M, Lescheid D, McCaffrey T, Schultz M, Seilheimer B, Smit A, et al. Bioregulatory systems medicine: an innovative approach to integrating the science of molecular networks, inflammation, and systems biology with the patient’s autoregulatory capacity? Front Physiol. 2015;6:225.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Gong G, He Y, Concha L, Lebel C, Gross DW, Evans AC, Beaulieu C. Mapping anatomical connectivity patterns of human cerebral cortex using in vivo diffusion tensor imaging tractography. Cereb Cortex. 2009;19(3):524–36.PubMedCrossRefGoogle Scholar
  80. 80.
    Goodman SN. Towards evidence-based medical statistics. 1: The P-value fallacy. Ann Intern Med. 1999;130:995–1004.PubMedCrossRefGoogle Scholar
  81. 81.
    Grove O, Berglund AE, Schabath MB, Aerts HJ, Dekker A, Wang H, Velazquez ER, Lambin P, Gu Y, Balagurunathan Y, et al. Quantitative computed tomographic descriptors associate tumor shape complexity and intratumor heterogeneity with prognosis in lung adenocarcinoma. PLoS One. 2015;10(3):e0118261.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Gu Y, Kumar V, Hall LO, Goldgof DB, Li CY, Korn R, Bendtsen C, Velazquez ER, Dekker A, Aerts H, et al. Automated delineation of lung tumors from CT images using a single click ensemble segmentation approach. Pattern Recognit. 2013;46(3):692–702.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Guerrero T, Zhang G, Huang TC, Lin KP. Intrathoracic tumour motion estimation from CT imaging using the 3D optical flow method. Phys Med Biol. 2004;49(17):4147–61.PubMedCrossRefGoogle Scholar
  84. 84.
    Guo Z, Shu Y, Zhou H, Zhang W, Wang H. Radiogenomics helps to achieve personalized therapy by evaluating patient responses to radiation treatment. Carcinogenesis. 2015;36(3):307–17.PubMedCrossRefGoogle Scholar
  85. 85.
    Gupta RK, Cloughesy TF, Sinha U, Garakian J, Lazareff J, Rubino G, Rubino L, Becker DP, Vinters HV, Alger JR. Relationships between choline magnetic resonance spectroscopy, apparent diffusion coefficient and quantitative histopathology in human glioma. J Neurooncol. 2000;50(3):215–26.PubMedCrossRefGoogle Scholar
  86. 86.
    Gupta S, Takebe N, Lorusso P. Targeting the Hedgehog pathway in cancer. Ther Adv Med Oncol. 2010;2(4):237–50.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Gutman DA, Cooper LA, Hwang SN, Holder CA, Gao J, Aurora TD, Dunn Jr WD, Scarpace L, Mikkelsen T, Jain R, et al. MR imaging predictors of molecular profile and survival: multi-institutional study of the TCGA glioblastoma data set. Radiology. 2013;267(2):560–9.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Haralick R, Shanmugam K, Dinstein I. Textural features for image classification. IEEE Trans Syst Man Cybern. 1973;3(6):610–21.CrossRefGoogle Scholar
  89. 89.
    Hatanpaa KJ, Burma S, Zhao D, Habib AA. Epidermal growth factor receptor in glioma: signal transduction, neuropathology, imaging, and radioresistance. Neoplasia. 2010;12(9):675–84.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Haynes B. Of studies, syntheses, synopses, summaries, and systems: the “5S” evolution of information services for evidence-based healthcare decisions. Evid Based Nurs. 2007;10(1):6–7.PubMedCrossRefGoogle Scholar
  91. 91.
    He L, Greenshields IR. A nonlocal maximum likelihood estimation method for Rician noise reduction in MR images. IEEE Trans Med Imaging. 2009;28(2):165–72.PubMedCrossRefGoogle Scholar
  92. 92.
    Hegi ME, Diserens AC, Gorlia T, Hamou MF, de Tribolet N, Weller M, Kros JM, Hainfellner JA, Mason W, Mariani L, et al. MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med. 2005;352(10):997–1003.PubMedCrossRefGoogle Scholar
  93. 93.
    Heldin CH. Targeting the PDGF signaling pathway in tumor treatment. Cell Commun Signal. 2013;11:97.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Heldin CH, Rubin K, Pietras K, Ostman A. High interstitial fluid pressure – an obstacle in cancer therapy. Nat Rev Cancer. 2004;4(10):806–13.PubMedCrossRefGoogle Scholar
  95. 95.
    Herold CJ, Lewin JS, Wibmer AG, Thrall JH, Krestin GP, Dixon AK, Schoenberg SO, Geckle RJ, Muellner A, Hricak H. Imaging in the Age of precision medicine: summary of the proceedings of the 10th biannual symposium of the international society for strategic studies in radiology. Radiology. 2016;279(1):226–38.PubMedCrossRefGoogle Scholar
  96. 96.
    Hersh WR, Weiner MG, Embi PJ, Logan JR, Payne PRO, Bernstam EV, Lehmann HP, Hripcsak G, Hartzog TH, Cimino JJ, et al. Caveats for the use of operational electronic health record data in comparative effectiveness research. Med Care. 2013;51(8):S30–7.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Heye AK, Culling RD, Hernandez MDV, Thrippleton MJ, Wardlaw JM. Assessment of blood–brain barrier disruption using dynamic contrast-enhanced MRI. A systematic review. Neuroimage-Clin. 2014;6:262–74.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Higano S, Yun X, Kumabe T, Watanabe M, Mugikura S, Umetsu A, Sato A, Yamada T, Takahashi S. Malignant astrocytic tumors: clinical importance of apparent diffusion coefficient in prediction of grade and prognosis. Radiology. 2006;241(3):839–46.PubMedCrossRefGoogle Scholar
  99. 99.
    Hinton GE, Salakhutdinov RR. Reducing the dimensionality of data with neural networks. Science. 2006;313(5786):504–7.PubMedCrossRefGoogle Scholar
  100. 100.
    Hinton GE, McClelland JL, Rumelhart DE. Distributed representations, in parallel distributed processing: explorations in the microstructure of cognition, In: Rumelhart DE, McClelland JL, editors. Cambridge, MA: MIT Press; 1986.Google Scholar
  101. 101.
    Hobbs SK, Shi G, Homer R, Harsh G, Atlas SW, Bednarski MD. Magnetic resonance image-guided proteomics of human glioblastoma multiforme. J Magn Reson Imaging. 2003;18(5):530–6.PubMedCrossRefGoogle Scholar
  102. 102.
    Holodny AI, Nusbaum AO, Festa S, Pronin IN, Lee HJ, Kalnin AJ. Correlation between the degree of contrast enhancement and the volume of peritumoral edema in meningiomas and malignant gliomas. Neuroradiology. 1999;41(11):820–5.PubMedCrossRefGoogle Scholar
  103. 103.
    Honda T, Kondo T, Murakami S, Saito H, Oshita F, Ito H, Tsuboi M, Nakayama H, Yokose T, Kameda Y, et al. Radiographic and pathological analysis of small lung adenocarcinoma using the new IASLC classification. Clin Radiol. 2013;68(1):e21–6.PubMedCrossRefGoogle Scholar
  104. 104.
    Horska A, Barker PB. Imaging of brain tumors: MR spectroscopy and metabolic imaging. Neuroimaging Clin N Am. 2010;20(3):293–310.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Houhou N, Bresson X, Szlam A, Chan TF, Thiran J-P. Semi-supervised segmentation based on non-local continuous min-cut. Scale Space Variational Methods Comput Vision. 2009;5567:112–23.CrossRefGoogle Scholar
  106. 106.
    Hsu W, Taira RK, El-Saden S, Kangarloo H, Bui AA. Context-based electronic health record: toward patient specific healthcare. IEEE Trans Inf Technol Biomed. 2012;16(2):228–34.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Hsu W, Han SX, Arnold CW, Bui AA, Enzmann DR. A data-driven approach for quality assessment of radiologic interpretations. J Am Med Inform Assoc. 2016;23(e1):e152–6.PubMedCrossRefGoogle Scholar
  108. 108.
    Hua X, Hibar DP, Ching CR, Boyle CP, Rajagopalan P, Gutman BA, Leow AD, Toga AW, Jack Jr CR, Harvey D, et al. Unbiased tensor-based morphometry: improved robustness and sample size estimates for Alzheimer’s disease clinical trials. Neuroimage. 2013;66:648–61.PubMedCrossRefGoogle Scholar
  109. 109.
    Hua X, Ching CR, Mezher A, Gutman BA, Hibar DP, Bhatt P, Leow AD, Jack Jr CR, Bernstein MA, Weiner MW, et al. MRI-based brain atrophy rates in ADNI phase 2: acceleration and enrichment considerations for clinical trials. Neurobiol Aging. 2016;37:26–37.PubMedCrossRefGoogle Scholar
  110. 110.
    Huang RY, Neagu MR, Reardon DA, Wen PY. Pitfalls in the neuroimaging of glioblastoma in the era of antiangiogenic and immuno/targeted therapy – detecting illusive disease, defining response. Front Neurol. 2015;6:33.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Hubbard R, Bayarri MJ. Confusion over measures of evidence (p’s) versus errors (a’s) in classical statistical testing. Am Stat. 2003;57(3):171–8.CrossRefGoogle Scholar
  112. 112.
    Ioannidis JPA. Why most published research findings are false. Plos Med. 2005;2(8):696–701.CrossRefGoogle Scholar
  113. 113.
    Jackson A, Kassner A, Annesley-Williams D, Reid H, Zhu XP, Li KL. Abnormalities in the recirculation phase of contrast agent bolus passage in cerebral gliomas: comparison with relative blood volume and tumor grade. AJNR Am J Neuroradiol. 2002;23(1):7–14.PubMedGoogle Scholar
  114. 114.
    Jacobs RE, Cherry SR. Complementary emerging techniques: high-resolution PET and MRI. Curr Opin Neurobiol. 2001;11(5):621–9.PubMedCrossRefGoogle Scholar
  115. 115.
    Jäger F, Yu D-Z, Frericks B, Wacker F, Hornegger J. A new method for MRI intensity standardization with application to lesion detection in the brain. In: Kobbelt L et al. editors. Vision modeling and visualization 2006. Berlin: Akademische Verlagsgesellschaft Aka GmbH; 2006. p. 269–76.Google Scholar
  116. 116.
    Jaynes ET. Information theory and statistical mechanics. Phys Rev. 1957;106(4):620–30.CrossRefGoogle Scholar
  117. 117.
    Jenkinson MD, du Plessis DG, Smith TS, Joyce KA, Warnke PC, Walker C. Histological growth patterns and genotype in oligodendroglial tumours: correlation with MRI features. Brain. 2006;129(Pt 7):1884–91.PubMedCrossRefGoogle Scholar
  118. 118.
    Joo KM, Jin J, Kim E, Ho Kim K, Kim Y, Gu Kang B, Kang YJ, Lathia JD, Cheong KH, Song PH, et al. MET signaling regulates glioblastoma stem cells. Cancer Res. 2012;72(15):3828–38.PubMedCrossRefGoogle Scholar
  119. 119.
    Kalpathy-Cramer J, Gerstner ER, Emblem KE, Andronesi OC, Rosen B. Advanced magnetic resonance imaging of the physical processes in human glioblastoma. Cancer Res. 2014;74(17):4622–37.PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Kanewala U, Bieman JM. Testing scientific software: a systematic literature review. Inf Softw Technol. 2014;56(10):1219–32.PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Kansagra AP, Yu JP, Chatterjee AR, Lenchik L, Chow DS, Prater AB, Yeh J, Doshi AM, Hawkins CM, Heilbrun ME, et al. Big data and the future of radiology informatics. Acad Radiol. 2016;23(1):30–42.PubMedCrossRefGoogle Scholar
  122. 122.
    Kansal AR, Torquato S, Chiocca EA, Deisboeck TS. Emergence of a subpopulation in a computational model of tumor growth. J Theor Biol. 2000;207(3):431–41.PubMedCrossRefGoogle Scholar
  123. 123.
    Kim WY, Danias PG, Stuber M, Flamm SD, Plein S, Nagel E, Langerak SE, Weber OM, Pedersen EM, Schmidt M, et al. Coronary magnetic resonance angiography for the detection of coronary stenoses. N Engl J Med. 2001;345(26):1863–9.PubMedCrossRefGoogle Scholar
  124. 124.
    Klein A, Andersson J, Ardekani BA, Ashburner J, Avants B, Chiang MC, Christensen GE, Collins DL, Gee J, Hellier P, et al. Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration. Neuroimage. 2009;46(3):786–802.PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Koh DM, Collins DJ. Diffusion-weighted MRI in the body: applications and challenges in oncology. AJR Am J Roentgenol. 2007;188(6):1622–35.PubMedCrossRefGoogle Scholar
  126. 126.
    Kono K, Inoue Y, Nakayama K, Shakudo M, Morino M, Ohata K, Wakasa K, Yamada R. The role of diffusion-weighted imaging in patients with brain tumors. AJNR Am J Neuroradiol. 2001;22(6):1081–8.PubMedGoogle Scholar
  127. 127.
    Koul D. PTEN signaling pathways in glioblastoma. Cancer Biol Ther. 2008;7(9):1321–5.PubMedCrossRefGoogle Scholar
  128. 128.
    Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification with deep convolutional neural networks. Adv Neural Inf Proces Syst. 2012;2:1097–105.Google Scholar
  129. 129.
    Ku BM, Lee YK, Ryu J, Jeong JY, Choi J, Eun KM, Shin HY, Kim DG, Hwang EM, Yoo JC, et al. CHI3L1 (YKL-40) is expressed in human gliomas and regulates the invasion, growth and survival of glioma cells. Int J Cancer. 2011;128(6):1316–26.PubMedCrossRefGoogle Scholar
  130. 130.
    Kumar V, Gu Y, Basu S, Berglund A, Eschrich SA, Schabath MB, Forster K, Aerts HJ, Dekker A, Fenstermacher D, et al. Radiomics: the process and the challenges. Magn Reson Imaging. 2012;30(9):1234–48.PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Kwitt R, Hegenbart S, Rasiwasia N, Vecsei A, Uhl A. Do we need annotation experts? A case study in celiac disease classification. Med Image Comput Comput Assist Interv. 2014;17(Pt 2):454–61.PubMedGoogle Scholar
  132. 132.
    Lacerda S, Law M. Magnetic resonance perfusion and permeability imaging in brain tumors. Neuroimaging Clin N Am. 2009;19(4):527–57.PubMedCrossRefGoogle Scholar
  133. 133.
    Lambin P, Rios-Velazquez E, Leijenaar R, Carvalho S, van Stiphout RG, Granton P, Zegers CM, Gillies R, Boellard R, Dekker A, et al. Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer. 2012;48(4):441–6.PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Landau DA, Carter SL, Stojanov P, McKenna A, Stevenson K, Lawrence MS, Sougnez C, Stewart C, Sivachenko A, Wang L, et al. Evolution and impact of subclonal mutations in chronic lymphocytic leukemia. Cell. 2013;152(4):714–26.PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Landgrebe TCW, Duin RPW. Approximating the multiclass ROC by pairwise analysis. Pattern Recogn Lett. 2007;28(13):1747–58.CrossRefGoogle Scholar
  136. 136.
    LeCun Y, Bottou L, Bengio Y, Haffner P. Gradient-based learning applied to document recognition. Proc IEEE. 1998;86(11):2278–324.CrossRefGoogle Scholar
  137. 137.
    LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521(7553):436–44.PubMedCrossRefGoogle Scholar
  138. 138.
    Lee J, Lustig M, Kim DH, Pauly JM. Improved shim method based on the minimization of the maximum off-resonance frequency for balanced steady-state free precession (bSSFP). Magn Reson Med. 2009;61(6):1500–6.PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Leow AD, Yanovsky I, Chiang MC, Lee AD, Klunder AD, Lu A, Becker JT, Davis SW, Toga AW, Thompson PM. Statistical properties of Jacobian maps and the realization of unbiased large-deformation nonlinear image registration. IEEE Trans Med Imaging. 2007;26(6):822–32.PubMedCrossRefGoogle Scholar
  140. 140.
    Liu H, Motoda H. Computational methods of feature selection. Chapman & Hall/CRC data mining and knowledge discovery series. Boca Raton: Chapman & Hall/CRC; 2008. 419 p.Google Scholar
  141. 141.
    Liu H, Setiono R. Feature selection via discretization. IEEE Trans Knowl Data Eng. 1997;9(4):642–5.CrossRefGoogle Scholar
  142. 142.
    Lustgarten JL, Gopalakrishnan V, Grover H, Visweswaran S. Improving classification performance with discretization on biomedical datasets. AMIA Annu Symp Proc. 2008;445–9.Google Scholar
  143. 143.
    Madabhushi A, Udupa JK. Interplay between intensity standardization and inhomogeneity correction in MR image processing. IEEE Trans Med Imaging. 2005;24(5):561–76.PubMedCrossRefGoogle Scholar
  144. 144.
    Mandelbrot BB. The fractal geometry of nature. Updated and augm. ed. New York: W.H. Freeman; 1983. 468 p.Google Scholar
  145. 145.
    Massoud TF, Gambhir SS. Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Genes Dev. 2003;17(5):545–80.PubMedCrossRefGoogle Scholar
  146. 146.
    Matiasz NJ, Silva AJ, Hsu W. Synthesizing clinical trials for evidence-based medicine: a representation of empirical and hypothetical causal relations. In: AMIA 2015 joint summits on translational science. Poster Presentation: San Francisco, CA; 2015.Google Scholar
  147. 147.
    McGillicuddy LT, Fromm JA, Hollstein PE, Kubek S, Beroukhim R, De Raedt T, Johnson BW, Williams SM, Nghiemphu P, Liau LM, et al. Proteasomal and genetic inactivation of the NF1 tumor suppressor in gliomagenesis. Cancer Cell. 2009;16(1):44–54.PubMedPubMedCentralCrossRefGoogle Scholar
  148. 148.
    McInerney T, Terzopoulos D. Deformable models in medical image analysis: a survey. Med Image Anal. 1996;1(2):91–108.PubMedCrossRefGoogle Scholar
  149. 149.
    Nagao M, Murase K. Measurement of heterogeneous distribution on Technegas SPECT images by three-dimensional fractal analysis. Ann Nucl Med. 2002;16(6):369–76.PubMedCrossRefGoogle Scholar
  150. 150.
    Nagarajan R, Ramadan S, Thomas MA. Detection of amide and aromatic proton resonances of human brain metabolites using localized correlated spectroscopy combined with two different water suppression schemes. Magn Reson Insights. 2010;2010(4):1–9.PubMedPubMedCentralGoogle Scholar
  151. 151.
    Nakano T, Asano K, Miura H, Itoh S, Suzuki S. Meningiomas with brain edema: radiological characteristics on MRI and review of the literature. Clin Imaging. 2002;26(4):243–9.PubMedCrossRefGoogle Scholar
  152. 152.
    National Research Council. (US) Committee on a framework for developing a new taxonomy of disease. Toward precision medicine: building a knowledge network for biomedical research and a new taxonomy of disease. The National Academies Collection: Reports funded by National Institutes of Health. Washington, DC: National Academies Press; 2011.Google Scholar
  153. 153.
    Niemeijer M, van Ginneken B, Staal J, Suttorp-Schulten MSA, Abramoff MD. Automatic detection of red lesions in digital color fundus photographs. IEEE Trans Med Imaging. 2005;24(5):584–92.PubMedCrossRefGoogle Scholar
  154. 154.
    Nyul LG, Udupa JK. On standardizing the MR image intensity scale. Magn Reson Med. 1999;42(6):1072–81.PubMedCrossRefGoogle Scholar
  155. 155.
    Ohgaki H, Kleihues P. Genetic pathways to primary and secondary glioblastoma. Am J Pathol. 2007;170(5):1445–53.PubMedPubMedCentralCrossRefGoogle Scholar
  156. 156.
    Ortensi B, Setti M, Osti D, Pelicci G. Cancer stem cell contribution to glioblastoma invasiveness. Stem Cell Res Ther. 2013;4(1):18.PubMedPubMedCentralCrossRefGoogle Scholar
  157. 157.
    Osada R, Funkhouser T, Chazelle B, Dobkin D. Shape distributions. ACM Trans Graph. 2002;21(4):807–32.CrossRefGoogle Scholar
  158. 158.
    Ozkan E, West A, Dedelow JA, Chu BF, Zhao W, Yildiz VO, Otterson GA, Shilo K, Ghosh S, King M, et al. CT gray-level texture analysis as a quantitative imaging biomarker of epidermal growth factor receptor mutation status in adenocarcinoma of the lung. AJR Am J Roentgenol. 2015;205(5):1016–25.PubMedCrossRefGoogle Scholar
  159. 159.
    Padhani AR, Liu G, Koh DM, Chenevert TL, Thoeny HC, Takahara T, Dzik-Jurasz A, Ross BD, Van Cauteren M, Collins D, et al. Diffusion-weighted magnetic resonance imaging as a cancer biomarker: consensus and recommendations. Neoplasia. 2009;11(2):102–25.PubMedPubMedCentralCrossRefGoogle Scholar
  160. 160.
    Pearl J. Probabilistic reasoning in intelligent systems: networks of plausible inference. 2nd ed. Representation and reasoning series. San Francisco: Morgan Kaufmann; 1988.Google Scholar
  161. 161.
    Pedro RWD, Nunes FLS, Machado-Lima A. Using grammars for pattern recognition in images: a systematic review. ACM Comput Surv. 2013;46(2):26.CrossRefGoogle Scholar
  162. 162.
    Peng Y, Jiang Y, Yang C, Brown JB, Antic T, Sethi I, Schmid-Tannwald C, Giger ML, Eggener SE, Oto A. Quantitative analysis of multiparametric prostate MR images: differentiation between prostate cancer and normal tissue and correlation with Gleason score--a computer-aided diagnosis development study. Radiology. 2013;267(3):787–96.PubMedCrossRefGoogle Scholar
  163. 163.
    Pennacchietti S, Michieli P, Galluzzo M, Mazzone M, Giordano S, Comoglio PM. Hypoxia promotes invasive growth by transcriptional activation of the met protooncogene. Cancer Cell. 2003;3(4):347–61.PubMedCrossRefGoogle Scholar
  164. 164.
    Petrella JR. Use of graph theory to evaluate brain networks: a clinical tool for a small world? Radiology. 2011;259(2):317–20.PubMedCrossRefGoogle Scholar
  165. 165.
    Pierallini A, Bonamini M, Bozzao A, Pantano P, DiStefano D, Ferone E, Raguso M, Bosman C, Bozzao L. Supratentorial diffuse astrocytic tumours: proposal of an MRI classification. Eur Radiol. 1997;7(3):395–9.PubMedCrossRefGoogle Scholar
  166. 166.
    Pinker K, Stadlbauer A, Bogner W, Gruber S, Helbich TH. Molecular imaging of cancer: MR spectroscopy and beyond. Eur J Radiol. 2012;81(3):566–77.PubMedCrossRefGoogle Scholar
  167. 167.
    Pisano ED, Gatsonis C, Hendrick E, Yaffe M, Baum JK, Acharyya S, Conant EF, Fajardo LL, Bassett L, D’Orsi C, et al. Diagnostic performance of digital versus film mammography for breast-cancer screening. N Engl J Med. 2005;353(17):1773–83.PubMedCrossRefGoogle Scholar
  168. 168.
    Poon M, Hamarneh G, Abugharbieh R. Efficient interactive 3D Livewire segmentation of complex objects with arbitrary topology. Comput Med Imaging Graph. 2008;32(8):639–50.PubMedCrossRefGoogle Scholar
  169. 169.
    Pope WB, Sayre J, Perlina A, Villablanca JP, Mischel PS, Cloughesy TF. MR imaging correlates of survival in patients with high-grade gliomas. AJNR Am J Neuroradiol. 2005;26(10):2466–74.PubMedGoogle Scholar
  170. 170.
    Prasad M, Sowmya A, Koch I. Efficient feature selection based on independent component analysis. In: Proceedings of the 2004 intelligent sensors, sensor networks & information processing conference; 2004. p. 427–32.Google Scholar
  171. 171.
    Rall LB. Representations of intervals and optimal error-bounds. Math Comput. 1983;41(163):219–27.CrossRefGoogle Scholar
  172. 172.
    Randen T, Husoy JH. FILTERING for texture classification: a comparative study. IEEE Trans Pattern Anal Mach Intell. 1999;21(4):291–310.CrossRefGoogle Scholar
  173. 173.
    Raza SM, Fuller GN, Rhee CH, Huang S, Hess K, Zhang W, Sawaya R. Identification of necrosis-associated genes in glioblastoma by cDNA microarray analysis. Clin Cancer Res. 2004;10(1 Pt 1):212–21.PubMedCrossRefGoogle Scholar
  174. 174.
    Rheinbay E, Suva ML, Gillespie SM, Wakimoto H, Patel AP, Shahid M, Oksuz O, Rabkin SD, Martuza RL, Rivera MN, et al. An aberrant transcription factor network essential for Wnt signaling and stem cell maintenance in glioblastoma. Cell Rep. 2013;3(5):1567–79.PubMedPubMedCentralCrossRefGoogle Scholar
  175. 175.
    Ribeiro MT, Singh S, Guestrin C. “Why should I trust you?”: explaining the predictions of any classifier. Computer Science: Learning, Cornell University Library, 2016. Last Accessed: March 23, 2016. Available from
  176. 176.
    Rios Piedra EA, Taira RK, El-Saden S, Ellingson B, Bui A, Hsu W. Assessing variability in brain tumor segmentation to improve volumetric accuracy and characterization of change. In: Proceedings of the IEEE international conference on biomedical and health informatics. Las Vegas, NV. 2016.Google Scholar
  177. 177.
    Robbins ME, Brunso-Bechtold JK, Peiffer AM, Tsien CI, Bailey JE, Marks LB. Imaging radiation-induced normal tissue injury. Radiat Res. 2012;177(4):449–66.PubMedPubMedCentralCrossRefGoogle Scholar
  178. 178.
    Robinson PN. Deep phenotyping for precision medicine. Hum Mutat. 2012;33(5):777–80.PubMedCrossRefGoogle Scholar
  179. 179.
    Rubinov M, Sporns O. Complex network measures of brain connectivity: uses and interpretations. Neuroimage. 2010;52(3):1059–69.PubMedCrossRefGoogle Scholar
  180. 180.
    Saeys Y, Inza I, Larranaga P. A review of feature selection techniques in bioinformatics. Bioinformatics. 2007;23(19):2507–17.PubMedCrossRefGoogle Scholar
  181. 181.
    Sahin M, Sur M. Genes, circuits, and precision therapies for autism and related neurodevelopmental disorders. Science. 2015;350(6263):aab3897.PubMedCrossRefGoogle Scholar
  182. 182.
    Saria S, Goldenberg A. Subtyping: what It is and its role in precision medicine. IEEE Intell Syst. 2015;30(4):70–5.CrossRefGoogle Scholar
  183. 183.
    Scheffler K, Hennig J. T1 quantification with inversion recovery TrueFISP. Magn Reson Med. 2001;45(4):720–3.PubMedCrossRefGoogle Scholar
  184. 184.
    Schneider U, Pedroni E, Lomax A. The calibration of CT Hounsfield units for radiotherapy treatment planning. Phys Med Biol. 1996;41(1):111–24.PubMedCrossRefGoogle Scholar
  185. 185.
    Shen L, Rangayyan RM, Desautels JL. Detection and classification of mammographic calcifications. Int J Pattern Recognit Artif Intell. 1993;7(6):1403–16.CrossRefGoogle Scholar
  186. 186.
    Silva AJ, Muller KR. The need for novel informatics tools for integrating and planning research in molecular and cellular cognition. Learn Mem. 2015;22(9):494–8.PubMedPubMedCentralCrossRefGoogle Scholar
  187. 187.
    Sim I, Carini S, Tu S, Wynden R, Pollock BH, Mollah SA, Gabriel D, Hagler HK, Scheuermann RH, Lehmann HP, et al. The human studies database project: federating human studies design data using the ontology of clinical research. AMIA Jt Summits Transl Sci Proc. 2010;2010:51–5.PubMedGoogle Scholar
  188. 188.
    Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. Computer science: computer vision and pattern recognition, Cornell University Library, 2015. Last Accessed: 24 March 2016. Available from
  189. 189.
    Sinha S, Sinha U, Kangarloo H, Huang HK. Magnetic resonance image synthesis from analytic solutions of spin-echo and radio frequency-spoiled gradient-echo images. Invest Radiol. 1992;27(10):856–64.PubMedCrossRefGoogle Scholar
  190. 190.
    Smith NB, Webb A. Introduction to medical imaging: physics, engineering and clinical applications. New York: Cambriduge University Press; 2011.Google Scholar
  191. 191.
    Smith JJ, Sorensen AG, Thrall JH. Biomarkers in imaging: realizing radiology’s future. Radiology. 2003;227(3):633–8.PubMedCrossRefGoogle Scholar
  192. 192.
    Sotiras A, Davatzikos C, Paragios N. Deformable medical image registration: a survey. IEEE Trans Med Imaging. 2013;32(7):1153–90.PubMedPubMedCentralCrossRefGoogle Scholar
  193. 193.
    Spence AM, Muzi M, Swanson KR, O’Sullivan F, Rockhill JK, Rajendran JG, Adamsen TCH, Link JM, Swanson PE, Yagle KJ, et al. Regional hypoxia in glioblastoma multiforme quantified with [F-18] fluoromisonidazole positron emission tomography before radiotherapy: correlation with time to progression and survival. Clin Cancer Res. 2008;14(9):2623–30.PubMedPubMedCentralCrossRefGoogle Scholar
  194. 194.
    Sporns O. Networks of the brain. Cambridge, MA: MIT Press; 2011. xi, 412 p., 8 p. of plates.Google Scholar
  195. 195.
    Stebbins GT, Murphy CM. Diffusion tensor imaging in Alzheimer’s disease and mild cognitive impairment. Behav Neurol. 2009;21(1):39–49.PubMedPubMedCentralCrossRefGoogle Scholar
  196. 196.
    Suzuki T, Izumoto S, Fujimoto Y, Maruno M, Ito Y, Yoshimine T. Clinicopathological study of cellular proliferation and invasion in gliomatosis cerebri: important role of neural cell adhesion molecule L1 in tumour invasion. J Clin Pathol. 2005;58(2):166–71.PubMedPubMedCentralCrossRefGoogle Scholar
  197. 197.
    Szigeti K, Szabo T, Korom C, Czibak I, Horvath I, Veres DS, Gyongyi Z, Karlinger K, Bergmann R, Pocsik M, et al. Radiomics-based differentiation of lung disease models generated by polluted air based on X-ray computed tomography data. BMC Med Imaging. 2016;16(1):14.PubMedPubMedCentralCrossRefGoogle Scholar
  198. 198.
    Team NLSTR, Aberle DR, Berg CD, Black WC, Church TR, Fagerstrom RM, Galen B, Gareen IF, Gatsonis C, Goldin J, et al. The national lung screening trial: overview and study design. Radiology. 2011;258(1):243–53.CrossRefGoogle Scholar
  199. 199.
    Teruel JR, Heldahl MG, Goa PE, Pickles M, Lundgren S, Bathen TF, Gibbs P. Dynamic contrast-enhanced MRI texture analysis for pretreatment prediction of clinical and pathological response to neoadjuvant chemotherapy in patients with locally advanced breast cancer. NMR Biomed. 2014;27(8):887–96.PubMedCrossRefGoogle Scholar
  200. 200.
    Thomassin-Naggara I, Siles P, Trop I, Chopier J, Darai E, Bazot M, Uzan S. How to measure breast cancer tumor size at MR imaging? Eur J Radiol. 2013;81(12):e790–800.CrossRefGoogle Scholar
  201. 201.
    Thompson PM, Toga AW. A framework for computational anatomy. Comput Visual Sci. 2002;5:13–34.CrossRefGoogle Scholar
  202. 202.
    Thompson G, Mills SJ, Stivaros SM, Jackson A. Imaging of brain tumors: perfusion/permeability. Neuroimaging Clin N Am. 2010;20(3):337–53.PubMedCrossRefGoogle Scholar
  203. 203.
    Thompson PM, Stein JL, Medland SE, Hibar DP, Vasquez AA, Renteria ME, Toro R, Jahanshad N, Schumann G, Franke B, et al. The ENIGMA Consortium: large-scale collaborative analyses of neuroimaging and genetic data. Brain Imaging Behav. 2014;8(2):153–82.PubMedPubMedCentralGoogle Scholar
  204. 204.
    Thornhill RE, Chen S, Rammo W, Mikulis DJ, Kassner A. Contrast-enhanced MR imaging in acute ischemic stroke: T2* measures of blood–brain barrier permeability and their relationship to T1 estimates and hemorrhagic transformation. AJNR Am J Neuroradiol. 2010;31(6):1015–22.PubMedCrossRefGoogle Scholar
  205. 205.
    Thrall JH. Appropriateness and imaging utilization: “computerized provider order entry and decision support”. Acad Radiol. 2014;21(9):1083–7.PubMedCrossRefGoogle Scholar
  206. 206.
    Tien RD, Felsberg GJ, Friedman H, Brown M, MacFall J. MR imaging of high-grade cerebral gliomas: value of diffusion-weighted echoplanar pulse sequences. AJR Am J Roentgenol. 1994;162(3):671–7.PubMedCrossRefGoogle Scholar
  207. 207.
    Tofts PS, Brix G, Buckley DL, Evelhoch JL, Henderson E, Knopp MV, Larsson HB, Lee TY, Mayr NA, Parker GJ, et al. Estimating kinetic parameters from dynamic contrast-enhanced T(1)-weighted MRI of a diffusable tracer: standardized quantities and symbols. J Magn Reson Imaging. 1999;10(3):223–32.PubMedCrossRefGoogle Scholar
  208. 208.
    Tong M, Hsu W, Taira RK. A formal representation for numerical data presented in published clinical trial reports. Stud Health Technol Inform. 2013;192:856–60.PubMedPubMedCentralGoogle Scholar
  209. 209.
    Tourassi GD, Ike 3rd R, Singh S, Harrawood B. Evaluating the effect of image preprocessing on an information-theoretic CAD system in mammography. Acad Radiol. 2008;15(5):626–34.PubMedPubMedCentralCrossRefGoogle Scholar
  210. 210.
    Turchi L, Debruyne DN, Almairac F, Virolle V, Fareh M, Neirijnck Y, Burel-Vandenbos F, Paquis P, Junier MP, Van Obberghen-Schilling E, et al. Tumorigenic potential of miR-18A* in glioma initiating cells requires NOTCH-1 signaling. Stem Cells. 2013;31(7):1252–65.PubMedCrossRefGoogle Scholar
  211. 211.
    Verhaak RG, Hoadley KA, Purdom E, Wang V, Qi Y, Wilkerson MD, Miller CR, Ding L, Golub T, Mesirov JP, et al. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell. 2010;17(1):98–110.PubMedPubMedCentralCrossRefGoogle Scholar
  212. 212.
    Vlieger EJ, Majoie CB, Leenstra S, den Heeten GJ. Functional magnetic resonance imaging for neurosurgical planning in neurooncology. Eur Radiol. 2004;14(7):1143–53.PubMedCrossRefGoogle Scholar
  213. 213.
    Wachowicz K. Evaluation of active and passive shimming in magnetic resonance imaging. Res Rep Nucl Med. 2014;4:1–12.CrossRefGoogle Scholar
  214. 214.
    Wang Q, Xu X, Zhang M. Normal aging in the basal ganglia evaluated by eigenvalues of diffusion tensor imaging. AJNR Am J Neuroradiol. 2010;31(3):516–20.PubMedCrossRefGoogle Scholar
  215. 215.
    Weber GL, Parat MO, Binder ZA, Gallia GL, Riggins GJ. Abrogation of PIK3CA or PIK3R1 reduces proliferation, migration, and invasion in glioblastoma multiforme cells. Oncotarget. 2011;2(11):833–49.PubMedPubMedCentralCrossRefGoogle Scholar
  216. 216.
    Weigelt B, Baehner FL, Reis-Filho JS. The contribution of gene expression profiling to breast cancer classification, prognostication and prediction: a retrospective of the last decade. J Pathol. 2010;220(2):263–80.PubMedGoogle Scholar
  217. 217.
    Weiskopf NG, Weng C. Methods and dimensions of electronic health record data quality assessment: enabling reuse for clinical research. J Am Med Inform Assoc. 2013;20(1):144–51.PubMedPubMedCentralCrossRefGoogle Scholar
  218. 218.
    Wick W, Platten M, Wick A, Hertenstein A, Radbruch A, Bendszus M, Winkler F. Current status and future directions of anti-angiogenic therapy for gliomas. Neuro Oncol. 2016;18(3):315–28.PubMedCrossRefGoogle Scholar
  219. 219.
    Wilkinson ID, Romanowski CAJ, Jellinek DA, Morris J, Griffiths PD. Motor functional MRI for pre-operative and intraoperative neurosurgical guidance. Br J Radiol. 2003;76(902):98–103.PubMedCrossRefGoogle Scholar
  220. 220.
    Xue S, Qiao J, Pu F, Cameron M, Yang JJ. Design of a novel class of protein-based magnetic resonance imaging contrast agents for the molecular imaging of cancer biomarkers. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2013;5(2):163–79.PubMedPubMedCentralCrossRefGoogle Scholar
  221. 221.
    Yu K, Lin YQ, Lafferty J. Learning image representations from the pixel level via hierarchical sparse coding. 2011 I.E. conference on computer vision and pattern recognition (Cvpr), 2011. p. 1713–1720.Google Scholar
  222. 222.
    Zacharaki EI, Wang S, Chawla S, Soo Yoo D, Wolf R, Melhem ER, Davatzikos C. Classification of brain tumor type and grade using MRI texture and shape in a machine learning scheme. Magn Reson Med. 2009;62(6):1609–18.PubMedPubMedCentralCrossRefGoogle Scholar
  223. 223.
    Zeiler MD, Fergus R. Visualizing and understanding convolutional networks. In: Computer vision – ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6–12, 2014, Proceedings, part i. New York: Springer; 2014. p. 818–33.Google Scholar
  224. 224.
    Zhang DS, Lu GJ. Review of shape representation and description techniques. Pattern Recogn. 2004;37(1):1–19.CrossRefGoogle Scholar
  225. 225.
    Zhao BS, James LP, Moskowitz CS, Guo PZ, Ginsberg MS, Lefkowitz RA, Qin YL, Riely GJ, Kris MG, Schwartz LH. Evaluating variability in tumor measurements from same-day repeat CT scans of patients with non-small cell lung cancer. Radiology. 2009;252(1):263–72.PubMedPubMedCentralCrossRefGoogle Scholar
  226. 226.
    Zhong Q, Simonis N, Li QR, Charloteaux B, Heuze F, Klitgord N, Tam S, Yu H, Venkatesan K, Mou D, et al. Edgetic perturbation models of human inherited disorders. Mol Syst Biol. 2009;5:321.PubMedPubMedCentralCrossRefGoogle Scholar
  227. 227.
    Zhu SC, Mumford D. A stochastic grammar of images. Found Trends Comput Graph Vision. 2006;2(4):259–362.CrossRefGoogle Scholar
  228. 228.
    Zhu SC, Wu YN, Mumford D. Minimax entropy principle and its application to texture modeling. Neural Comput. 1997;9(8):1627–60.CrossRefGoogle Scholar
  229. 229.
    Zhuge Y, Udupa JK. Intensity standardization simplifies brain MR image segmentation. Comput Vis Image Underst. 2009;113(10):1095–103.PubMedPubMedCentralCrossRefGoogle Scholar
  230. 230.
    Zinn PO, Mahajan B, Sathyan P, Singh SK, Majumder S, Jolesz FA, Colen RR. Radiogenomic mapping of edema/cellular invasion MRI-phenotypes in glioblastoma multiforme. PLoS One. 2011;6(10):e25451.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Singapore 2016

Authors and Affiliations

  1. 1.Department of Radiological SciencesUniversity of CaliforniaLos AngelesUSA

Personalised recommendations