Taxonomy and Phylogeny of Grain Amaranths

  • Saubhik Das


Interrelationship between species as well as different morphotypes, varieties and landraces and phyletic linkage among them have been investigated and evaluated by many authors applying morphological parameters (like gross morphology, seed surface architecture, pollen morphology, morphology and anatomy of bracteoles, phyllotaxy, course of vascular supply etc.), cytogenetical, biochemical and molecular (like electrophoresis of seed protein, isozyme polymorphism, leaf phenolic chromatogram, single nucleotide polymorphism (SNPs), tubulin based polymorphism and different morphological markers viz., RAPD, AFLP, ITS, ISSR, microsatellite etc.) parameters. Concrete idea about species interrelationship and their phyletic linkage are the prerequisite for their involvement in any breeding program. Most of the studies yielded a common inference that all grain amaranths have evolved from weed progenitor A. hybridus. Grain species showed close relation with A. hybridus than other weed species. Among the grain species A. hypochondriacus and A. caudatus are more closely related with each other than either to A. cruentus. Small size of the chromosomes with indistinguishable secondary constriction made the Karyological study of amaranths very difficult. The genus is tribasic having three gametic number (n = 14, 16, 17). Few studies have been done on chromosome morphology, karyotype, distribution of constitutive heterochromatin. Karyotype of the species is highly symmetrical. Wild species have more symmetrical karyotype and higher chiasma frequency than the cultivated species. Species differentiation has been effected by chromosomal repatterning, recombination and selection at the subspecific level. Taxonomic delimitation and application of names in vegetable amaranths are still very tentative. Several new taxa at subspecies, variety level even at species level have been introduced. Due to a large number of synonymy two large species complex or aggregates A. tricolor and A.blitum have been established with component taxa to avoid confusion. Taxonomic delimitation in weed amaranth is also very problematic. Along with morphology, some molecular parameters like isozyme, ITS restriction site variation, AFLP based marker etc. have been applied to solve the problems. Two hypotheses have been proposed regarding the origin of grain amaranths from their wild weed progenitor – monophyletic and polyphyletic. The monophyletic hypothesis based on plant and seed morphology suggests that all three grain amaranths have originated from a single progenitor, A. hybridus. The polyphyletic theory based on phytogeography suggests that all the three grain amaranths have evolved independently. A third hypothesis suggests that all the three grain amaranths have originated from genetically differentiated population of A. hybridus through independent domestication event. The validity of these hypotheses has been challenged due to lack of adequate sampling of all grain amaranths and putative weedy progenitors and modified versions have been proposed.


Internal Transcribe Spacer Amplify Fragment Length Polymorphism Seed Coat Colour Domestication Event Isozyme Polymorphism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Adhikary D, Pratt DB (2015) Morphological and Taxonomic analysis of the weedy and cultivated Amaranthus hybridus species complex. Syst Bot 40(2):604–610CrossRefGoogle Scholar
  2. Aellen P (1961) Die Amaranthaceen Mitteleleuropus. Carl Hanser Verlag, MunchenGoogle Scholar
  3. Ahrens WH, Wax LM, Stoller EW (1981) Identification of triazine resistant Amaranthus spp. Weed Sci 29:345–348Google Scholar
  4. Arus P, Shields CR, Orton TJ (1985) Application of isozyme electrophoresis for purity testing and cultivar identification of F1 hybrids of Brassica napus. Euphytica 3493:651–657CrossRefGoogle Scholar
  5. Avise C, Hamrick JL (eds) (1996) Conservation genetics: case studies fromnature. Chapman and Hall, New YorkGoogle Scholar
  6. Awasthi AK, Nagaraja GM, Naik GV et al (2004) Genetic diversity and relationships in mulberry (genus Morus) as revealed by RAPD and ISSR marker assays. BMC Genet. doi: 10.1186/1471-2156-5-1 PubMedPubMedCentralGoogle Scholar
  7. Baker W, Ollis WD (1961) Recent developments in the chemistry of natural phenolic compounds. Pergamon Press, New YorkGoogle Scholar
  8. Barba de la Rosa AP, Fomsgaard IS, Larsen B et al (2009) Amaranth (Amaranthus hypochondriacus) as an alternative crop for sustainable food production: phenolic acids and flavonoids with potentialimpact on its nutraceutical quality. J Cereal Sci 49:117–121CrossRefGoogle Scholar
  9. Bardini M, Lee D, Donini P et al (2004) Tubulinbased polymorphism (TBP): a new tool, based on functionally relevant sequences, to assess genetic diversity in plant species. Genome 47(2):281–291PubMedCrossRefGoogle Scholar
  10. Basu A, Ghosh M, Meyer R et al (2004) Analysis of genetic diversity in cultivated jute determined by means of SSR markers and AFLP profiling. Crop Sci 44:678–685CrossRefGoogle Scholar
  11. Bate-Smith EC, Lerner NH (1954) Leucoanthocyanins. (2) Systematic distribution of Leucoanthocyanins in leaves. Biochem J 58:126–132PubMedPubMedCentralCrossRefGoogle Scholar
  12. Becker HC, Damgaard C, Karlsson B (1992) Environmental variation for out-crossing rate in rapeseed. Theor Appl Genet 84:303–306PubMedGoogle Scholar
  13. Behera B, Patnaik SN (1974) Chemotaxonomic studies in the family Amaranthaceae. Cytologia 39:121–131CrossRefGoogle Scholar
  14. Bonasora MG, Poggio L, Greizerstain EJ (2013) Cytogenetic studies in four cultivated Amaranthus (Amaranthaceae) species. Com Cytogenet 7(1):53–61CrossRefGoogle Scholar
  15. Bradova J, Matejova E (2008) Comparison of the results of SDS PAGE and chip electrophoresis of wheat storage proteins. Chromatographia 67:583–588CrossRefGoogle Scholar
  16. Braglia L, Manca A, Mastromauro F et al (2010) cTBP: a successful Intron Lenght Polymorphism (ILP)-based genotyping method targeted to well defined experimental need. Diversity 2:572–585CrossRefGoogle Scholar
  17. Brenan JPM (1961) Amaranthus in Britain. Watsonia 4:261–280Google Scholar
  18. Brenan JPM, Townsend CC (1980) Proposal to reject Amaranthus blitum L. under art.69 in favor of A. lividus L. Taxon 29:695–696CrossRefGoogle Scholar
  19. Brenner DM, Baltensperger DD, Kulakow PA et al (2000) Genetic resources and breeding in Amaranthus. In: Janick J (ed) Plant breeding reviews, vol 19. Wiley, New York, pp 227–285Google Scholar
  20. Breviario D, Baird WV, Sangoi S et al (2007) High polymorphism and resolution in targeted fingerprinting with combined β-tubulin introns. Mol Breed 20(3):249–259CrossRefGoogle Scholar
  21. Breviario D, Gianì S, Ponzoni E et al (2008) Plant tubulin intronics. Cell Biol Int 32(5):571–573PubMedCrossRefGoogle Scholar
  22. Britton NL, Brown A (1896) An illustrated flora of the Northern United States, Canada and the British Possessions, vol 2. Charles Scribner’s Sons, New YorkGoogle Scholar
  23. Brumitt R (1984) Report of the committee for spermatophytes 27. Taxon 33:297–301CrossRefGoogle Scholar
  24. Chamberlain JR (1998) Isozyme variation in Calliandra calothyrsus (Legumonosae): it’s implication for species delimitation and conservation. Am J Bot 85:37–47PubMedCrossRefGoogle Scholar
  25. Chan KF (1996) M.Phil. thesis. University of HongKong, Hong KongGoogle Scholar
  26. Chan KF, Sun M (1997) Genetic diversity and relationships detected by isozyme and RAPD analysis of crop and wild species of Amaranthus. Theor Appl Genet 95:865–873CrossRefGoogle Scholar
  27. Chaturvedi M, Dutta K, Pal M (1997) Cytopalynology of Amaranthus L. and Chenopodium L. – the two pantoporate taxa. Feddes Repertorium 108(5–6):325–333Google Scholar
  28. Coetzer E, Al-Khatib K, Peterson DE (2002) Glufosinate efficacy on Amaranthus species in glufosinate- resistant Soybeans (Glycine max). Weed Technol 16:326–331CrossRefGoogle Scholar
  29. Coons MP (1975) The genus Amaranthus in Ecuador. Ph.D thesis, Indiana Universitiy, Bloomington, USAGoogle Scholar
  30. Coons MP (1978) The status of Amaranthus hybridus L. in South America, part 2. The taxonomic problem. Ciencia y Naturaleza (Quito) 19:66–71Google Scholar
  31. Coons MP (1982) Relationships of Amaranthus caudatus. Econ Bot 36(2):129–146CrossRefGoogle Scholar
  32. Cornille A, Gladieux P, Smulders MJM et al (2012) New insight into the history of domesticated apple: secondary contribution of the European wild apple to the genome of cultivated varieties. PLoS Genet 8, e1002703PubMedPubMedCentralCrossRefGoogle Scholar
  33. Costea M (1997) Morphology of seed in some species of the genus Amaranthus L. Acta Horti Botanici Bucurestiensis (University of Bucharest) 53:24–37Google Scholar
  34. Costea M (1998a) Amaranthus L. subgenus Albersia (Kunth) Gren. & Romania. Revue Roumaine de Biologie (Romanian Academy of Science) 43:95–112Google Scholar
  35. Costea M (1998b) Monograph of the genus Amaranthus L. in Romania. Ph.D thesis, University of Bucharest, College of Biology, Bucharest, RomaniaGoogle Scholar
  36. Costea M, DeMason DA (2001) Stem morphology and anatomy in Amaranthus L. (Amaranthaceae) – taxonomic significance. J Torrey Bot Soc 128(3):254–281CrossRefGoogle Scholar
  37. Costea M, Tardif FJ (2003b) The bracteoles in Amaranthus (Amaranthaceae): their morphology, structure, function, and taxonomic significance. Sida 20:969–985Google Scholar
  38. Costea M, Tardif FJ (2003c) The biology of Canadian weeds 126. Amaranthus albus L., A. blitoides S. Watson and A. blitum L. Can J Plant Sci 83:1039–1066CrossRefGoogle Scholar
  39. Costea M, Sanders A, Waines G (2001a) Preliminary results towards revision of the Amaranthus hybridus species complex (Amaranthaceae). Sida 19:931–974Google Scholar
  40. Costea M, Waines G, Sanders A (2001b) Notes on some little known Amaranthus taxa (Amaranthaceae) in the United States. Sida 19:975–992Google Scholar
  41. Costea M, Brenner DM, Tardif FJ et al (2006) Delimitation of Amaranthus cruentus L. and Amaranthus caudatus L. using micromorphology and AFLP analysis: an application in germplasm identification. Genet Resour Crop Evol 53(8):1625–1633CrossRefGoogle Scholar
  42. Crawford DJ (1983) Phylogenetic and systematic inferences from electrophoretic studies, part A. In: Tanksley S, Orton T (eds) Isozyme in plant genetics and breeding. Elsevier Publication, Amstardam, pp 257–287Google Scholar
  43. Dangi R, Lagu M, Choudhary L et al (2004) Assessment of genetic diversity in Trigonella foenum-graecum and Trogonella caerulea using ISSR and RAPD markers. BMC Plant Biol 4:13PubMedPubMedCentralCrossRefGoogle Scholar
  44. Das S (2012a) Systematics and taxonomic delimitation of vegetatable, grain and weed amaranths: a morphological and biochemical approach. Genet Resour Crop Evol 59:289–303CrossRefGoogle Scholar
  45. Das S (2012b) Taxonomical observation on the grain amaranths and new varieties of Amaranthus cruentus (Amaranthaceae). Nor J Bot 30:412–420CrossRefGoogle Scholar
  46. Das S (2013) Infraspecific variability of Amaranthus tricolor (Amaranthaceae) in India with a new variety. Phytotaxa 88(2):25–30CrossRefGoogle Scholar
  47. Das S (2015) Amaranthus parganensis (Amaranthaceae), a new species from West Bengal, India. Novon 23:406–410CrossRefGoogle Scholar
  48. Das S, Iamonico D (2014) Amaranthus bengalense (Amaranthaceae) a new species from India with taxonomic notes on A. blitum aggregate. Phytotaxa 181(5):293–300CrossRefGoogle Scholar
  49. Das S, Mukherjee KK (1995) Biochemical studies on Ipomoea pollen to understand species homology. Grana 34:332–337CrossRefGoogle Scholar
  50. Devadas VS, Gopaiakrishnan PK, Peter KV (1992) Genetic divergence in vegetable amaranths. South Indian Hortic 40(1):16–20Google Scholar
  51. Drzewiecki J (2001) Similarities and differences between Amaranthus species and cultivars and estimation of outcrossing rate on the basis of electrophoretic separations of urea-soluble seed proteins. Euphytica 119:279–287CrossRefGoogle Scholar
  52. Drzewiecki J, Delgado-Licon E, Haruenkit R et al (2003) Identification and differences of total proteins and their soluble fractions in some Pseudocereals based on electrophoretic patterns. J Agric Food Chem 51(26):7798–7804PubMedCrossRefGoogle Scholar
  53. Dzunkova M, Janovska D, Hlasna-Cepkova P et al (2011) Glutelin protein fraction as a tool for clear identification of Amaranth accessions. J Cereal Sci 53(2):198–205CrossRefGoogle Scholar
  54. El-Esawi M (2008) M.Sc. thesis. Tanta University, Faculty of Science, Botany DepartmentGoogle Scholar
  55. Eliasson U (1988) Floral morphology and taxonomic relation among genera of Amaranthaceae in the new world and the Hawaii islands. J Linn Soc Bot 96:235–283CrossRefGoogle Scholar
  56. Erdtman G (1952) Pollen morphology and plant taxonomy, Angiosperms. Almquist Wiksell, StockholmGoogle Scholar
  57. Erdtman G (1966) Pollen morphology and plant taxonomy, Angiosperms. Alquimist & Wiksell, StokholmGoogle Scholar
  58. Filias FR, Gaulliez A, Guedes M (1980) Amaranthus blitum vs. A. lividus (Amaranthaceae). Taxon 29:149–150CrossRefGoogle Scholar
  59. Franssen AS, Skinner DZ, Al-Khatib K et al (2001a) Pollen morphological differences in Amaranthus species and interspecific hybrids. Weed Sci 49:732–737CrossRefGoogle Scholar
  60. Ghafoor A, Ahmadl Z (2003) Exploitation of (vigna mungo (L.) Heeper) germplasm using multivariate analysis based on agronomic trait. Pak J Bot 35:187–196Google Scholar
  61. Gorinstein S, Moshe R, Greene LJ (1991) Evaluation of four Amaranthus species through protein electrophoretic patterns and their amino acid composition. J Agric Food Chem 39(5):851–854CrossRefGoogle Scholar
  62. Gornal RJ, Bohm BA (1980) Flavonoid and taxonomy of Boykinia and related genera. Can J Bot 58:1768–1779CrossRefGoogle Scholar
  63. Grant WF (1959a) Cytogenetic studies in Amaranthus I. Cytological aspects of sex determination in dioecious species. Can J Bot 37:413–417CrossRefGoogle Scholar
  64. Grant WF (1959b) Cytogenetic studies in Amaranthus II. Natural interspecific hybridization between A. dubius and A. spinosus. Can J Bot 37:1063–1070CrossRefGoogle Scholar
  65. Grant WF (1959c) Cytogenetic studies in Amaranthus III. Chromosome numbers and phylogenetic aspects. Can J Genet Cytol 1:313–328CrossRefGoogle Scholar
  66. Gravis A, Constantinesco C (1907) Contribution a l’ anatomie des Amaranthaceae. Archieves de I’Institut Botanique de I’Universite de Liege, pp 1–65Google Scholar
  67. Greizerstein EJ, Poggio L (1992) Estudios citogenetico de seis hibridos inter-especificos de Amaranthus. Darwiniana 31:159–165Google Scholar
  68. Greizerstein EJ, Poggio L (1994) Karyological studies in grain amaranths. Cytologia (Tokyo) 59:25–30CrossRefGoogle Scholar
  69. Greizerstein EJ, Poggio L (1995) Meiotic studies of spontaneous hybrids of Amaranthus: genome analysis. Plant Breed 114:448–450CrossRefGoogle Scholar
  70. Greizerstein EJ, Naranjo CA, Poggio L (1997) Karyological studies in five wild species of Amaranthus. Cytologia 62:115–120CrossRefGoogle Scholar
  71. Gupta VK, Gudu S (1990) Inheritance of some morphological trait in grain amaranths. Euphytica 46:79–84CrossRefGoogle Scholar
  72. Gupta VK, Gudu S (1991) Interspecific hybrids and possible phylogenetic relations in grain amaranths. Euphytica 52:33–38Google Scholar
  73. Hake S, Ross-Ibarra J (2015) Genetic, evolutionary, and plant breeding insights from the domestication of maize. eLife 4:1–8CrossRefGoogle Scholar
  74. Hamrick J, Godt H (1996) Conservation genetics of endemic plant species. In: Avise JC, Hamrick JL (eds) Conservation genetics, case histories from nature. Chapman and Hall, New York, pp 281–304Google Scholar
  75. Hardys H, Balick M, Schierwater B (1992) Applications of random amplified polymorphic DNA (RAPD) in molecular ecology. Mol Ecol 1(1):55–63CrossRefGoogle Scholar
  76. Hauptli H, Jain S (1984) Allozyme variation and evolutionary relationships of grain amaranths (Amaranthus spp.). Theor Appl Genet 69:153–165PubMedGoogle Scholar
  77. Hauptli H, Jain S (1985) Genetic variation in outcrossing rate and correlated floral traits in a population of grain amaranth (Amaranthus cruentus L.). Genetica 66:21–27CrossRefGoogle Scholar
  78. Hong QB, Hou L, Luo XY et al (2001) Using RAPD for evaluating genetic background among naked barley varieties in Sichuan Northwestern region. Sci Agric Sin 34(20):133–138Google Scholar
  79. Hooker JD (1885) Flora of British India, vol 4. LondonGoogle Scholar
  80. Horak MJ, Peterson DE, Chessman DJ et al (1994) Pigweed identification: a pictorial guide to the common pigweeds of the Great Plains. Kansas State University, ManhattanGoogle Scholar
  81. Huang H, Dane F, Kubisiak TL (1998) Allozyme and RAPD analysis of the genetic diversity and geographic variation in wild polulation of American Chestnut (Fagaceae). Am J Bot 85(7):1013–1021PubMedCrossRefGoogle Scholar
  82. Hugin G (1987) Einige Bemerkungen zu wenig bekannten Amaranthus- Sippen (Amaranthaceae) Mitteleuropas. Willdenowia 16:453–478Google Scholar
  83. Iamonico D (2010a) On the presence of Amaranthus polygonoides L. (Amaranthaceae) in Europe. Phyton (Horn, Austria) 50(2):205–219Google Scholar
  84. Iamonico D (2010b) Biology, life strategy and invasiveness of Amaranthus retroflexus L. (Amaranthaceae) in Central Italy: Preliminary research. Bot Serbica 34:137–145Google Scholar
  85. Iamonico D (2012) Amaranthus powellii subsp. cacciatoi comb. et stat. nov. (Amaranthaceae). Nord J Bot 30:12–16CrossRefGoogle Scholar
  86. Iamonico D (2013) Amaranthus blitum L. s.l. In: Invasive species compendium. Wallingford, CAB International, UK. Accessed 31 May 2014
  87. Iamonico D (2014a) Lectotypification of Linnaean names in the genus Amaranthus L. (Amaranthaceae). Taxon 63(1):146–150Google Scholar
  88. Iamonico D (2014b) Amaranthus gangeticus (Amaranthaceae), a name incertae sedis. Phytotaxa 162(5):299–300Google Scholar
  89. Iamonico D (2014c) Nomenclature survey of the genus Amaranthus (Amaranthaceae). 3. Names to the Italian Flora. Plant Biosystems (in press)Google Scholar
  90. Iamonico D (2014d) Amaranthus graecizans s.l. (Amaranthacee) in Italia: note tassonomiche e distributive. Informatore Botanico Italiano (in press)Google Scholar
  91. Iamonico D, Iberite M (2012) Amaranthaceae and Chenopodiaceae in Italy: current understanding and future prospective. In: Timonin AK, Sukhorukov AP, Harper GH, Nilova MV (eds) Proceedings of the symposium “Caryophyllales”: new insights into the phylogeny, systematics and morphological evolution of the order. M V Lomonosov State University, Moscow, 24–27 September 2012, pp 65–69Google Scholar
  92. Iudina RS, Zheleznova NB, Zakharova OV et al (2005) Isozyme variation in a genetic collection of amaranths (Amaranthus L.). Genetika 41:1681–1687PubMedGoogle Scholar
  93. Janovska D, Eepkova P, Bradova J (2008) Comparison of SDS PAGE and chip electrophoresis in Amaranthus species assesment, In J.Prohens J, Badenes ML (eds) Proceedings of the 18th EUCARPIA general congressí, Valencia, Spain, 9–12 September 2008, pp 139–142Google Scholar
  94. Juan R, Pastor J, Alaiz M et al (2007) Electrophoretic characterization of Amaranthus L. seed proteins and its systematic implication. Bot J Linn Soc 155(1):57–63CrossRefGoogle Scholar
  95. Jugran A, Bhatt ID, Rawal RS (2010) Characterisation of agro-diversity by seed storage protein electrophoresis: focus on rice germplasm from Uttarakhand Himalaya, India. Rice Sci 17(2):122–128CrossRefGoogle Scholar
  96. Karp A, Isaac PG, Ingram GS (1998) Molecular tools for screening biodiversity: plant and animals. Chapman & Hall, Thompson Science, London, pp 10–17CrossRefGoogle Scholar
  97. Kehinde TO, Ajala MO, Daniel IO et al (2013) Physiological and Genetic Integrity of Amaranth (Amaranthus spp.) Seeds during storage. Int J Plant Breed Genet 7:35–46CrossRefGoogle Scholar
  98. Khoshoo TN, Pal M (1972) Cytogenetic pattern in Amaranthus: Chromosomes. Today 3:259267Google Scholar
  99. Kietlinski KD, Jimenez F, Jellen EN et al (2013) Relationships between the Weedy Amaranthus hybridus (Amaranthaceae) and the Grain Amaranths. Crop Sci 54(1):220–228CrossRefGoogle Scholar
  100. Kirkpatrick BA (1995) Interspecific relationships within the genus Amaranthus (Amaranthaceae). Ph.D. thesis. Texas A & M University, USAGoogle Scholar
  101. Klopper K, Robel J (1989) Beitrge zur Systematik morphologie und anatomie der gattung Amaranthus L. 2. Samenmorphologie und-anatomie ausgewahtter vertreter. Gleditschia 17:171–182Google Scholar
  102. Koebner RMD, Powell W, Donini P (2001) Contribution of DNA molecular marker technologies to the genetics and breeding of wheat and barley. Plant Breed Rev 21:181–220Google Scholar
  103. Kolano B, Pando LG, Maluszynska J (2001) Molecular cytogenetic studies in Chenopodium quinoa and Amaranthus caudatus. Acta Societatis Botanicorum Poloniae 70(2):85–90Google Scholar
  104. Koracev I (1969) Material on the phylogeny of the genus Amaranthus (Pollen morphology). Nauc Trud Visselskostop. Int V Kolavov Raster Plovdiv 28(1):133–136Google Scholar
  105. Kowal T (1954) Cechy morfologiczne I anatomicznenasion rodzaju Amaranthus L. oraz klucze do ich oznaczania. Monogr Bot (Warszawa):170–193Google Scholar
  106. Kulakow PA, Jain SK (1990a) Grain amaranths crop species, evolution and genetics. In: Minnesota Agriculture Proc, Fourth amaranth Conference, St. Paul University of Minnesota, USA, pp 105–114Google Scholar
  107. Kulakow PA, Jain SK (1990b) Genetics of grain amaranths. IV. Varieties and early generation response to selection in Amaranthus cruentus L. Theor Appl Genet 74:113–120Google Scholar
  108. Kulakow PA, Hauptli H, Jain S (1985) Genetics of grain Amaranthus. Mendalian analysis of six colour characteristics. J Hered 76:27–30Google Scholar
  109. Lakhsminarasimhan P, Godbole A (2001) Amaranthaceae. In: Singh NP et al (eds) Flora of Maharashtra State dicotyledons, vol 2. Botanical Survey of India, Calcutta, pp 777–793Google Scholar
  110. Lanoue KZ, Wolf PG, Browning S et al (1996) Phylogenetic analysis of restriction site variation in wild and cultivated Amaranthus species (Amaranthaceae). Theor Appl Genet 93:722–732PubMedCrossRefGoogle Scholar
  111. Lee SW, Ledig FT, Johnson DR (2002) Genetic variation at allozyme and RAPD markers in Pinus longaeva (Pinaceae) of the White Mountains, California. Am J Bot 89:566–577Google Scholar
  112. Lee JR, Hong GY, Dixit A et al (2008) Characterization of microsatellite loci developed for Amaranthus hypochondriacus and their cross amplification in wild species. Conserv Genet 9:243–246CrossRefGoogle Scholar
  113. Lemen C (1980) Allocation of reproductive effect to the male and female strategies in wind-pollinated plants. Oecologia 45:156–159CrossRefGoogle Scholar
  114. Linnaeus C (1753) Species plantarum 2. Salvius, Stockholm, p 1200Google Scholar
  115. Linnaeus C (1763) Systema Naturae, 13th edn. Salvius, Stockholm, p 559Google Scholar
  116. Loiseleur JLA (1810) Notice sur les plantes a ajouter a la Flore de France (Flora Gallica; avec quelques Correections et Observations. J B Sajou, Paris, p 172CrossRefGoogle Scholar
  117. Londo JP, Chiang YC, Hung KH et al (2006) Phytogeography of Asian wild rice, Oryza rufipogon, reveals multiple independent domestication of cultivated rice, Oryza sativa. Proc Natl Acad Sci 103:9578–9583PubMedPubMedCentralCrossRefGoogle Scholar
  118. Madhusoodanan KJ (1978) Cytogenetical studies on vegetable amaranths. Ph.D thesis, Bhopal University, BhopalGoogle Scholar
  119. Madhusoodanan KJ, Nazeer MA (1983) Comparative morphology of the somatic karyotypes of vegetable amaranths and its phylogenetic significance. Cytologia 48:237–244CrossRefGoogle Scholar
  120. Madhusoodanan KJ, Pal M (1981) Cytology of vegetable amaranths. Bot J Linn Soc 82(1):61–68CrossRefGoogle Scholar
  121. Mallory MA, Hall RV, McNabb AR et al (2008) Development and characterization of microsatellite markers for the grain amaranths. Crop Sci 48:1098–1106CrossRefGoogle Scholar
  122. Mandal N, Das PK (2002) Intra- and interspecific genetic diversity in grain amaranthus using ramdom amplified polymorphic DNA markers. Plant Tissue Cult Biotechnol 12(1):49–56Google Scholar
  123. Mathai PJ (1978) Amaranthus, a neglected vegetable. Indian Farm 28(1):29–32Google Scholar
  124. Maughan PJ, Smith SM, Fairbanks DJ et al (2010) Development characterization and linkage mapping of single nucleotide polymorphism in the Grain amaranths (Amaranthus sp.). Plant Genome 4(1):92–101CrossRefGoogle Scholar
  125. Mayo CM, Horak MJ, Peterson DE et al (1995) Differential control of 4 amaranthus species by 6 postemergence herbicides in soybean (Glycine max). Weed Technol 9:141–147Google Scholar
  126. McClure JW, Alston RE (1966) Chemotaxonomy of Lemnaceae. Am J Bot 53:849–859PubMedCrossRefGoogle Scholar
  127. McNeill J, Barrie FR, Buck WR et al (eds) (2012) International code of nomenclature for algae, fungi and plants (Melbourne Code): adopted by the eighteenth international botanical congress, Melbourne, Australia, July 2011. Regnum Vegetabile 154, RuggellGoogle Scholar
  128. Mohindeen HK, Irulappan I (1993) Improvement in amaranths. In: Chadha KL, Kalloo G (eds) Advances in horticulture: vegetable crops, vol 5, Malhotra Publishing House. New Delhi, India, pp 305–323Google Scholar
  129. Moquin-Tandon CHBA (1849) Amaranthaceae. In: De Candolle A (ed) Prodromus systematis naturalis regni vegetabilis 13, vol 2. Paris, pp 231–424Google Scholar
  130. Mosyakin SL, Robertson KR (1996) New infrageneric taxa and combination in Amaranthus (Amaranthaceae). Ann Bot Fenn 33:275–281Google Scholar
  131. Murray MJ (1940) The genetics of sex determination in the family Amaranthaceae. Genetics 25:409–431PubMedPubMedCentralGoogle Scholar
  132. Nolan C, Noyes A, Bennett A et al (2010) Inter Simple Sequence Repeats (ISSRs) reveal genetic variation amomg mid-atlantic polulations of threatened African Amaranthus pumilis and phylogenetic relationship. Castanea 75:506–516CrossRefGoogle Scholar
  133. Nowicke JW (1993) Pollen morphology and exine ultrastructure in Caryophyllales. In: Behnke HD, Mahbri TJ (eds) Evolution and systematic in Caryophyllales. Springer, pp 165–221Google Scholar
  134. Osborne TB (1907) The proteins of the Wheat Kernel. Carnegie Institution of Washington, Washington, DC, p 119CrossRefGoogle Scholar
  135. Pal M (1972) Evolution and improvement of cultivated amaranths. I. Breeding system and inflorescence structure. Proc Ind Natl Sci Acad 38:28–37Google Scholar
  136. Pal M, Khoshoo TN (1972) Evolution and improvement of cultivated amaranths. V. Inviability, Weakness and sterility in hybrids. J Hered 63:78–82Google Scholar
  137. Pal M, Khoshoo TN (1973a) Evolution and improvement of cultivated amaranths. VI. Cytogenetic relationship in grain types. Theor Appl Genet 43:343–350PubMedCrossRefGoogle Scholar
  138. Pal M, Khoshoo TN (1973b) Evolution and improvement of cultivated amaranths. VII. Cytogenetic relationship invegetable Amaranths. Theor Appl Genet 43:343–350PubMedCrossRefGoogle Scholar
  139. Pal M, Khoshoo TN (1974) Grain amaranths. In: Hutchinson JB (ed) Evolutionary studies in world crops: diversity and change in the Indian sub-continent. UK, pp 129–137Google Scholar
  140. Pal M, Khoshoo TN (1982) Evolution and improvement of cultivated Amaranths IV. Cytogenetic relationship between the two basic chromosome numbers. J Hered 73:353–356Google Scholar
  141. Pal M, Ohri D, Subrahmanyam (2000) A new basic chromosome number for Amaranthus (Amaranthaceae). Cytologia 65:13–16CrossRefGoogle Scholar
  142. Pal M, Pandey RM, Khoshoo TN (1982) Evolution and improvement of cultivated amaranths. IX. Cytogenetic relationship between the two basic chromosome chromosome numbers. J Herd 73:353–356Google Scholar
  143. Palomino G, Rubi R (1991) Diferencias cromosomicas entre algunas especias y tipos del genero Amaranthus distribuidos en Mexico, Actas Primer Congreso International del Amaranto. Morelos, MexicoGoogle Scholar
  144. Pammi S, Schertz K, Xu G et al (1994) Random amplified polymorphic DNA markers in Sorghum. Theor Appl Genet 89:80–88PubMedCrossRefGoogle Scholar
  145. Pan RS, Sirohi PS, Sivakami N (1992) Genetic divergence in vegetable amaranths. Indian J Hortic 49(2):183–186Google Scholar
  146. Park Y-J, Nishikawa T (2012) Rapid identification of Amaranthus caudatus and Amaranthus hypochondriacus by sequencing and PCR-RFLP analysis of two starch synthase gene. Genome 55(8):623–628Google Scholar
  147. Poets AM, Fang Z, Clegg MT et al (2015) Barley landraces are characterized by geographically heterogeneous genomic origin. Genome Biol 16:173PubMedPubMedCentralCrossRefGoogle Scholar
  148. Poggio L (1988) Aspectos citogenéticos de los amarantos silvestres y cultivados. Actas de las Primeras Jornadas Nacionales sobre Amarantos (Santa Rosa, La Pampa) pp 34–49Google Scholar
  149. Popa G, Cornea CP, Ciuca M et al (2010) Studies of genetic diversity in Amaranthus species using the RAPD markers. Analele Universitati din Oradee- Fascicula Biol Tom 17:280–285Google Scholar
  150. Pratt DB, Clark LG (2001) Amaranthus rudis and A. tuberculatus– one species or two? J Torrey Bot Soc 128:282–296CrossRefGoogle Scholar
  151. Qiang WX, Jin PY (2013) Comparison of genetic diversity among Amaranth accessions from South and South-East Asia using SSR markers. Korean J Med Crop Sci 21(3):220–228CrossRefGoogle Scholar
  152. Rafinesque CS (1836) Flora Telluriana 3. Printed by the author, Philadelphia, p 100Google Scholar
  153. Rahman MH (2001) Production of yellow –seeded brassica napas through interspecific crosses. Plant Breed 120:463–472CrossRefGoogle Scholar
  154. Ranade SA, Sane PV (1995) PCR in plant genetic research. J Indian Bot Soc A74:431–441Google Scholar
  155. Ranade SA, Kumar A, Goswami M et al (1997) Genome analysis of Amaranths: determination of inter- and intra-species variation. J Biosci 22(4):457–464CrossRefGoogle Scholar
  156. Rayburn AL, McCloskey R, Tatum TC et al (2005) Genome size analysis of weedy Amaranthus species. Crop Sci 45:2557–2562CrossRefGoogle Scholar
  157. Román B, Hernández R, Pujadas-Salvá A et al (2007) Genetic diversity in two variants of Orobanche gracilis Sm. [var. gracilis and var. deludens (Beck) A. Pujadas](Orobanchaceae) from different regions of Spain. J Biotechnol 10:0717–3458. doi: 10.2225/vol10-issue-2-fulltext-6
  158. Roxburgh W (1832) Flora Indica; or, description of indian plants, vol 3. Serampore: Printed for W. Thacker and Co, Calcutta and Parbury, Aellen and Co, London, p 875Google Scholar
  159. Russell J, Fuller J, Macaulay M et al (1997) Direct comparison of levels of genrtic variation amomg barley accessions detected by RFLP, AFLP, SSRs and RAPDs. Theor Appl Genet 95:714–722CrossRefGoogle Scholar
  160. Sammour RH (1991) Using electrophoretic techniques in varietal identification, biosystematic analysis, phylogenetic relations and genetic resources management. J Islam Acad Sci 4(3):221–226Google Scholar
  161. Sammour RH, Hammoud MA, Abd Alla SA (1993) Electrophoretic variations in Amaranthus. Bot Bull Acadamia Sinica 34:37–42Google Scholar
  162. Sammour RH, El-Zahwar Mustafa A, Badr S et al (2007) Genetic variation in accessions of Lathyrus sativus L. Acta Bot Croat 66:1–13Google Scholar
  163. Sauer JD (1950) The grain amaranths. A survey of their history & classification. Ann Mo Bot Gard 37:561–632CrossRefGoogle Scholar
  164. Sauer JD (1953) Herbarium species as records of genetic research. Am Nat 187:155–156CrossRefGoogle Scholar
  165. Sauer JD (1955) Revision of the dioecious amaranths. Madrono 13:5–46Google Scholar
  166. Sauer JD (1967) The grain amaranths and their relatives: a revised taxonomic and geographic survey. Ann Mo Bot Gard 54:103–137CrossRefGoogle Scholar
  167. Sauer JD (1976) Grain amaranths. In: Simmonds NW (ed) Evolution of crop plants. London, pp 4–7Google Scholar
  168. Sauer JD (1993) Amaranthaceae: Amaranth family. In: Historical geography of crop plants. Boca Raton, p 9–14Google Scholar
  169. Segura–Nieto M, de la Rosa AP B, Parades-Lopez O et al (1994) Biochemistry of amaranth protein. In: Amaranth: biology, chemistry and technology. CRC Press, Boca Raton, pp 75–106Google Scholar
  170. Sharma AK, Banik M (1965) Cytological investigation of different genera of Amaranthaceae with a view to trace their interrelationship. Bull Bot Soc Bengal 19:40–50Google Scholar
  171. Sharma S, Dawson I, Waugh R (1995) Relationships among cultivated and wild lentils revealed by RAPD analysis. Theor Appl Genet 91:647–654Google Scholar
  172. Snezana DM, Marija K, Danijela R et al (2012) Assessment of genetic relatedness of the two Amaranthus retroflexus polulation by protein and Random Amplified Poymorphic DNA (RAPD) markers. Afr J Biotechnol 11:7331–7337Google Scholar
  173. Sreelathakumary I, Peter KV (1993) Amaranth-Amaranthus spp. In: Kallo G, Bergh BO (eds) Genetic improvement of vegetable crops. Pergamon Press, Oxford, pp 315–323CrossRefGoogle Scholar
  174. Srivastava R, Roy BK (2012) Analysis of genetic variation among accessions of wild and cultivated species of Amaranthus based on RAPD and SDS-PAGE markers. Int J Pharm Bio Sci 3(4):168–178Google Scholar
  175. Srivastava R, Roy BK (2014) A new chromosome number for Amaranthus blitum. J New Biol Report 3(2):111–114Google Scholar
  176. Stebbins G (1971) Chromosomal evolution in higher plans. Edward Arnold, LondonGoogle Scholar
  177. Stefu Nova V, Bezo M, Labajova M et al (2014) Genetic analysis of three Amaranthus species using ISSR markers. Emir J Food Agric 26(1):35–45Google Scholar
  178. Stetter MG, Muller T, Schmid KJ (2015) Incomplete domestication of south American grain amaranths (Amaranthus caudatus) from its wild relatives. doi:
  179. Sweat JK, Horak MJ, Peterson DE et al (1998) Herbicide efficacy on four Amaranthus species in soybean (Glycine max). Weed Technol 12:315–321Google Scholar
  180. Syamkumar S, Sasikumar B (2007) Molecular Mrker based genetic diversity analysis of Curcuma species from India. Sci Hortic 112(2):235–241CrossRefGoogle Scholar
  181. Tanksley SD, Orton TJ (eds) (1983) Isozyme in plant genetics and breeding, part A. Elsevier Science Publication B. V, New YorkGoogle Scholar
  182. Thellung A (1914) Amaranthus. In: Ascherson P, Graebner P (eds) Synopsis der Mitteleuropaischen Flora 5(1). Engelmann, Leipzig, pp 225–356Google Scholar
  183. Thellung A (1926) Amaranthus bouchonii Thell. Monde Plant 27:4–5Google Scholar
  184. Trannel PJ, Wassom JJ, Jeschke MR et al (2002) Transmission of herbiside resistance from a monoecious to a dioecious weedy Amaranthus species. Theor Appl Genet 105:674–679CrossRefGoogle Scholar
  185. Transue DK, Fairabanks D, Robinson LR et al (1994) Species identification by RAPD analysis of grain amaranth genetic resources. Crop Sci 34:1385–1389CrossRefGoogle Scholar
  186. Turner BL (1954) Chromosome numbers and their phyletic interpretation. In: Behenke HD, Mabry TJ (eds) Caryophyllales evolution and systematic. New York, pp 27–43Google Scholar
  187. Varalakshmi B (2004) Characterization and preliminary evaluation of vegetable amaranth (Amaranthus spp.) germplasm. PGR News Lett 137:55–57Google Scholar
  188. Villars D (1807) Catalogue méthodique de plantes du jardin de Strasbourg. F G Levrault, Strasbourg, p 398Google Scholar
  189. Virk PS, Ford-Lloyd BV, Jackson MT et al (1995) Use of RAPD for the study of diversity within plant diversity collection. Heredity 74:170–179PubMedCrossRefGoogle Scholar
  190. Walter J, Dobes C (2004) Morphological characters, geographic distribution and ecology of neophytic Amaranthus blitum L. subsp. emarginatus in Austria. Annalen des Natuhristorischen Museums in Wien 105(B):645–672Google Scholar
  191. Wassom JJ, Tranel PJ (2005) Amplified fragment length polymorphism-based genetic relationship among weedy weedy Amaranthus species. J Hered 96:410–416PubMedCrossRefGoogle Scholar
  192. Wax LM (1995) Pigweeds of the Midwest—distribution, importance, and management. Proc Iowa Integ Crop Manage Conf 7:239–242Google Scholar
  193. Waycott W, Fort S (1994) Differentiation of nearly identical germplasm by a combination of molecular and morphological analysis. Genome 85:239–244Google Scholar
  194. Weaver SE, McWilliams EL (1980) The biology of Canadian weeds. 44. Amaranthus retroflexus L., A. powellii S. Wats. and A. hybridus L. Can J Plant Sci 60:1215–1234CrossRefGoogle Scholar
  195. Wetzel DK, Horak MJ, Skinner DZ (1999a) Use of PCR-based molecular markers to identify weedy Amaranthus species. Weed Sci 47:518–523Google Scholar
  196. Wetzel DK, Horak MJ, Skinner DZ et al (1999b) Transfer of herbiside resistance from Amaranthus palmeri to Amaranthus rudis. Weed Sci 47:538–543Google Scholar
  197. Wilkin P (1992) The status of Amaranthus bouchonii Thell within Amaranthus L. section Amaranthus: new evidence from morphology and isoenzyme. J Linn Soc Bot 108:253–267CrossRefGoogle Scholar
  198. Wilson CL (1924) Medullary bundle in relation to primary vascular system in Chenopodiaceae and Amaranthaceae. Bot Gaz 78:175–199CrossRefGoogle Scholar
  199. Wu H, Sun M, Yue S et al (2000) Field evaluation of an Amaranthus genetic resource collection in China. Genet Resour Crop Evol 47(1):43–53CrossRefGoogle Scholar
  200. Xiao SG, Liu ZM, Song Y et al (2000) Classification of vegetable amaranth variety resources. J Hunan Agric Univ 26(4):274–277Google Scholar
  201. Xu F, Sun M (2001) Comparative analysis of phylogenetic relationships of grain amaranths and their wild relatives (Amaranthus: Amaranthaceae) using internal transcribed spacer, amplified fragment length polymorphism and double – primer fluorescent inter simple sequence repeat markers. Mol Phylogenet Evol 21(3):372–387PubMedCrossRefGoogle Scholar
  202. Yoo K, Jang S (2003) Intra-specific relationship of Lactuca sativa var. capitata cultivars based on RAPD analysis. Korean J Hortic Sci 21:273–278Google Scholar
  203. Yoshimi Y, Chowdhury A, Hidenori K et al (2007) Sci Hortic 112:366–375CrossRefGoogle Scholar
  204. Zebrowska J, Tyrka M (2003) The use of RAPD markers for strawberry identification and genetic diversity studies. Food Agric Environ 1(1):115–117Google Scholar
  205. Zheleznov AV, Sonenko LR, Zheleznova NB (1997) Seed proteins of the wild and cultivated Amaranthus species. Euphytica 97:177–182CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Singapore 2016

Authors and Affiliations

  • Saubhik Das
    • 1
  1. 1.Department of BotanyTaki Government CollegeTakiIndia

Personalised recommendations