Skip to main content

Methods: Ab Initio Downfolding and Model-Calculation Techniques

  • Chapter
  • First Online:
Ab Initio Studies on Superconductivity in Alkali-Doped Fullerides

Part of the book series: Springer Theses ((Springer Theses))

  • 360 Accesses

Abstract

We describe computational methods which are used in the present calculations. Our scheme relies on a combination of ab initio and model-calculation techniques. Considering that a low-energy physics is governed by the subspace near the Fermi level, we construct a realistic electron-phonon-coupled low-energy Hamiltonian from first principles (ab initio downfolding) and solve it accurately by model-calculation methods. In this chapter, we first describe a general framework of the present scheme. Then, we move onto the details of the ab initio downfolding. To derive phonon-related terms in the low-energy Hamiltonian, we develop a novel ab initio downfolding scheme, which we call constrained density-functional perturbation theory (cDFPT). The analysis of the low-energy Hamiltonian is done by the extended dynamical mean-field theory, for which we also give a detailed description. Finally, we discuss interfaces between the two steps (ab initio downfolding and analysis of the model).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    See e.g., Ref. [10] for the study in which the frequency dependence of the Coulomb interaction in \(\tilde{\mathcal H}_\mathrm{eff}\) is explicitly treated.

  2. 2.

    The self-energy correction gives only a quantitative change in the low-energy band structure, whose effects were studied in detail in e.g., Ref. [14].

  3. 3.

    Strictly speaking, this expression [Eq. (2.116)] is valid only when the ionic potential \(V_\mathrm{{ion}}\) is local. In practice, we utilize the pseudopotential, which has non-local part. In this case, we have to introduce three-point response functions, however, it does not change the outline presented in this section.

  4. 4.

    See Appendix B for the proof that \(\varSigma _t + \varSigma _r = | g^{(p)} | ^2 \chi ^{t}_\mathrm{{LDA}} + | g^{(b)} | ^2 \chi ^{r}_\mathrm{{LDA}}\) is indeed identical to \(\varSigma = | g^{(b)} | ^2 \chi _\mathrm{{LDA}}\).

  5. 5.

    If we allow the long range magnetic order, the antiferromagnetically ordered phase occupies the wide region in the T-U phase diagram at \(T=0\).

  6. 6.

    There is another formulation of the extended DMFT, in which the Hubbard-Stratonovich transformation is applied to both the local and non-local interactions [69, 70].

  7. 7.

    In the coherent-state path integral formalism, the coherent states, the eigenstates of the annihilation operators, are used as the basis. Since the eigenvalues of the boson operators, which are constructed to be Hermitian, are real numbers, we can treat the operators as if they were just real numbers in this formalism.

  8. 8.

    Since we consider the low-energy Hamiltonian, the Coulomb interaction in Eq. (2.165) and the electron-phonon couplings in Eq. (2.171) should be partially screened quantities. Then, they have some frequency dependence reflecting the frequency dependence of the polarization [see Eqs. (2.114) and (2.119)]. In this section we assume them to be static since we expect this assumption is a good approximation in the case of the alkali-doped fullerides (see Appendix in Chap. 3.).

  9. 9.

    The non-local Coulomb interactions with the form \(V_{ij} \hat{N}_{i}\hat{N}_j\) only give the density-type coupling. Therefore, \(\hat{B}_{\nu }^\dagger \) and \(\hat{B}_{\nu }\) can be identified with the real-phonon operators.

  10. 10.

    In practice, the \({\mathcal O}_\mathrm{s.f.}\) and \({\mathcal O}_\mathrm{p.h.}\) matrices have non-zero off-diagonal elements for a limited blocks (the diagonal elements are always zero). Then, it is enough to introduce the constant shift matrices \(s_a\gamma I \) to the block-diagonalized matrices which have nonzero off-diagonal elements, where I is the identity matrix.

  11. 11.

    An alternative solution is e.g., to introduce the n-vertices update, where \(k_s \rightarrow k_s \pm n\) or \(k_p \rightarrow k_p \pm n\) [82].

  12. 12.

    \(\delta \tau \sim \beta \) corresponds to the shift in minus direction by the amount \(\beta - \delta \tau \sim 0\).

  13. 13.

    We choose a gauge so that the anomalous self-energy is real.

  14. 14.

    The calculations of the frequency dependence of the partially screened interactions are highly expensive in the case of the alkali-doped fullerides, which have a large unit cell. In Appendix in Chap. 3, in order to check the validity of using the static interaction, we calculate the frequency dependence in a limited frequency region for a representative material (\(\mathrm{Cs}_3\mathrm{C}_{60}\) with \(V_{\! {\mathrm{C}_{60}}^{\! \! 3-}} = 762\) \(\AA ^3\)).

  15. 15.

    In this thesis, we do not consider the frequency dependence of the partially screened electron-phonon coupling \(g^{(p)}\) for the same reason as the partially screened Coulomb interactions \(W^{(p)}\). Since the expressions for \(g^{(p)}\) Eq. (2.119) and \(W^{(p)}\) Eq. (2.114) are similar, we also expect that \(g^{(p)}\) has little structure in a frequency region up to a frequency larger than the bandwidth. Then the static approximation is a reasonable assumption in the fulleride problem.

  16. 16.

    The pseudopotential is composed of the local part \(V_\mathrm{loc} (\mathbf{r})\) and the non-local part \(V_\mathrm{NL} (\mathbf{r}, \mathbf{r}')\).

References

  1. M. Born, J.R. Oppenheimer, Ann. Phys. (Leipzig) 84, 457 (1927)

    Article  ADS  Google Scholar 

  2. P. Hohenberg, W. Kohn, Phys. Rev. 136, B864 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  3. W. Kohn, L.J. Sham, Phys. Rev. 140, A1133 (1965)

    Article  ADS  MathSciNet  Google Scholar 

  4. N.F. Mott, Proc. Phys. Soc. Lond. Sect. A 62, 416 (1949)

    Google Scholar 

  5. G. Kotliar, S.Y. Savrasov, K. Haule, V.S. Oudovenko, O. Parcollet, C.A. Marianetti, Rev. Mod. Phys. 78, 865 (2006)

    Article  ADS  Google Scholar 

  6. K. Held, Adv. Phys. 56(6), 829 (2007)

    Article  ADS  Google Scholar 

  7. M. Imada, T. Miyake, J. Phys. Soc. Jpn. 79(11), 112001 (2010)

    Article  ADS  Google Scholar 

  8. J.W. Negele, H. Orland, Quantum Many-Particle Systems (Westview Press, Boulder, 1988)

    MATH  Google Scholar 

  9. K.G. Wilson, Rev. Mod. Phys. 55, 583 (1983)

    Article  ADS  Google Scholar 

  10. P. Werner, M. Casula, T. Miyake, F. Aryasetiawan, A.J. Millis, S. Biermann, Nat. Phys. 8, 331 (2012)

    Article  Google Scholar 

  11. N. Marzari, D. Vanderbilt, Phys. Rev. B 56, 12847 (1997)

    Article  ADS  Google Scholar 

  12. I. Souza, N. Marzari, D. Vanderbilt, Phys. Rev. B 65, 035109 (2001)

    Article  ADS  Google Scholar 

  13. N. Marzari, A.A. Mostofi, J.R. Yates, I. Souza, D. Vanderbilt, Rev. Mod. Phys. 84, 1419 (2012)

    Article  ADS  Google Scholar 

  14. M. Hirayama, T. Miyake, M. Imada, Phys. Rev. B 87, 195144 (2013)

    Article  ADS  Google Scholar 

  15. F. Aryasetiawan, M. Imada, A. Georges, G. Kotliar, S. Biermann, A.I. Lichtenstein, Phys. Rev. B 70, 195104 (2004)

    Article  ADS  Google Scholar 

  16. Y. Nomura, K. Nakamura, R. Arita, Phys. Rev. Lett. 112, 027002 (2014)

    Article  ADS  Google Scholar 

  17. R.G. Parr, W. Yang, Density-Functional Theory of Atoms and Molecules (Oxford University Press USA, New York, 1994)

    Google Scholar 

  18. W. Kohn, Highlights of Condensed Matter Theory (North-Holland, Amsterdam, 1985)

    Google Scholar 

  19. M. Levy, Proc. Nat. Acad. Sci. 76(12), 6062 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  20. M. Levy, Phys. Rev. A 26, 1200 (1982)

    Article  ADS  Google Scholar 

  21. D.M. Ceperley, B.J. Alder, Phys. Rev. Lett. 45, 566 (1980)

    Article  ADS  Google Scholar 

  22. J.P. Perdew, A. Zunger, Phys. Rev. B 23, 5048 (1981)

    Article  ADS  Google Scholar 

  23. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  24. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 78, 1396 (1997)

    Article  ADS  Google Scholar 

  25. M.S. Hybertsen, S.G. Louie, Phys. Rev. B 35, 5585 (1987)

    Article  ADS  Google Scholar 

  26. P. Giannozzi, S. de Gironcoli, P. Pavone, S. Baroni, Phys. Rev. B 43, 7231 (1991)

    Article  ADS  Google Scholar 

  27. S. de Gironcoli, Phys. Rev. B 51, 6773 (1995)

    Article  ADS  Google Scholar 

  28. F. Favot, A. Dal, Corso. Phys. Rev. B 60, 11427 (1999)

    Article  ADS  Google Scholar 

  29. S. Baroni, S. de Gironcoli, A. Dal, Corso, P. Giannozzi, Rev. Mod. Phys. 73, 515 (2001)

    Google Scholar 

  30. J.M. Ziman, Principles of the Theory of Solids (Cambridge University Press, Cambridge, 1972)

    Book  MATH  Google Scholar 

  31. H. Hellmann, Einführung in die Quantenchemie (Franz Deuticke, Leipzig, 1937)

    Google Scholar 

  32. R.P. Feynman, Phys. Rev. 56, 340 (1939)

    Article  ADS  Google Scholar 

  33. P.P. Ewald, Ann. der Phys. 369(3), 253 (1921)

    Article  ADS  Google Scholar 

  34. A. Georges, G. Kotliar, W. Krauth, M.J. Rozenberg, Rev. Mod. Phys. 68, 13 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  35. A.M. Sengupta, A. Georges, Phys. Rev. B 52, 10295 (1995)

    Article  ADS  Google Scholar 

  36. Q. Si, J.L. Smith, Phys. Rev. Lett. 77, 3391 (1996)

    Article  ADS  Google Scholar 

  37. T. Maier, M. Jarrell, T. Pruschke, M.H. Hettler, Rev. Mod. Phys. 77, 1027 (2005)

    Article  ADS  Google Scholar 

  38. R. Blankenbecler, D.J. Scalapino, R.L. Sugar, Phys. Rev. D 24, 2278 (1981)

    Article  ADS  Google Scholar 

  39. M. Imada, Y. Hatsugai, J. Phys. Soc. Jpn. 58(10), 3752 (1989)

    Article  ADS  Google Scholar 

  40. W.L. McMillan, Phys. Rev. 138, A442 (1965)

    Article  ADS  Google Scholar 

  41. D. Ceperley, G.V. Chester, M.H. Kalos, Phys. Rev. B 16, 3081 (1977)

    Article  ADS  Google Scholar 

  42. H. Yokoyama, H. Shiba, J. Phys. Soc. Jpn. 56(10), 3582 (1987)

    Article  ADS  Google Scholar 

  43. H. Yokoyama, H. Shiba, J. Phys. Soc. Jpn. 56(4), 1490 (1987)

    Article  ADS  Google Scholar 

  44. D. Tahara, M. Imada, J. Phys. Soc. Jpn. 77(11), 114701 (2008)

    Article  ADS  Google Scholar 

  45. N.E. Bickers, D.J. Scalapino, S.R. White, Phys. Rev. Lett. 62, 961 (1989)

    Article  ADS  Google Scholar 

  46. N.E. Bickers, S.R. White, Phys. Rev. B 43, 8044 (1991)

    Article  ADS  Google Scholar 

  47. S.R. White, Phys. Rev. Lett. 69, 2863 (1992)

    Article  ADS  Google Scholar 

  48. S.R. White, Phys. Rev. B 48, 10345 (1993)

    Article  ADS  Google Scholar 

  49. W. Metzner, M. Salmhofer, C. Honerkamp, V. Meden, K. Schönhammer, Rev. Mod. Phys. 84, 299 (2012)

    Article  ADS  Google Scholar 

  50. M. Imada, T. Kashima, J. Phys. Soc. Jpn. 69(9), 2723 (2000)

    Article  ADS  Google Scholar 

  51. S. Sugiura, A. Shimizu, Phys. Rev. Lett. 108, 240401 (2012)

    Article  ADS  Google Scholar 

  52. S. Sugiura, A. Shimizu, Phys. Rev. Lett. 111, 010401 (2013)

    Article  ADS  Google Scholar 

  53. Y. Kuramoto, T. Watanabe, Phys. B+C 148(1–3), 80 (1987)

    Google Scholar 

  54. W. Metzner, D. Vollhardt, Phys. Rev. Lett. 62, 324 (1989)

    Article  ADS  Google Scholar 

  55. E. Müller-Hartmann, Z. Phys. B 74, 507 (1989)

    Google Scholar 

  56. A. Georges, G. Kotliar, Phys. Rev. B 45, 6479 (1992)

    Article  ADS  Google Scholar 

  57. F.J. Ohkawa, J. Phys. Soc. Jpn. 60(10), 3218 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  58. F.J. Ohkawa, Prog. Theoret. Phys. Suppl. 106, 95 (1991)

    Article  ADS  Google Scholar 

  59. M. Jarrell, Phys. Rev. Lett. 69, 168 (1992)

    Article  ADS  Google Scholar 

  60. R. Bulla, Phys. Rev. Lett. 83, 136 (1999)

    Article  ADS  Google Scholar 

  61. G. Moeller, Q. Si, G. Kotliar, M. Rozenberg, D. Fisher, Phys. Rev. Lett. 74, 2082 (1995)

    Article  ADS  Google Scholar 

  62. R. Bulla, T.A. Costi, D. Vollhardt, Phys. Rev. B 64, 045103 (2001)

    Article  ADS  Google Scholar 

  63. N.H. Tong, S.Q. Shen, F.C. Pu, Phys. Rev. B 64, 235109 (2001)

    Article  ADS  Google Scholar 

  64. M. Imada, A. Fujimori, Y. Tokura, Rev. Mod. Phys. 70, 1039 (1998)

    Article  ADS  Google Scholar 

  65. J. Hubbard, Proc. R. Soc. Lond. Ser. A. Math. Phys. Sci. 281(1386), 401 (1964)

    Google Scholar 

  66. W.F. Brinkman, T.M. Rice, Phys. Rev. B 2, 4302 (1970)

    Article  ADS  Google Scholar 

  67. P. Sun, G. Kotliar, Phys. Rev. B 66, 085120 (2002)

    Article  ADS  Google Scholar 

  68. P. Sun, G. Kotliar, Phys. Rev. Lett. 92, 196402 (2004)

    Article  ADS  Google Scholar 

  69. T. Ayral, S. Biermann, P. Werner, Phys. Rev. B 87, 125149 (2013)

    Article  ADS  Google Scholar 

  70. L. Huang, T. Ayral, S. Biermann, P. Werner, Phys. Rev. B 90, 195114 (2014)

    Article  ADS  Google Scholar 

  71. R.L. Stratonovich, Sov. Phys. Dokl. 2, 416 (1957)

    ADS  Google Scholar 

  72. J. Hubbard, Phys. Rev. Lett. 3, 77 (1959)

    Article  ADS  Google Scholar 

  73. E. Gull, A.J. Millis, A.I. Lichtenstein, A.N. Rubtsov, M. Troyer, P. Werner, Rev. Mod. Phys. 83, 349 (2011)

    Article  ADS  Google Scholar 

  74. J.E. Hirsch, R.M. Fye, Phys. Rev. Lett. 56, 2521 (1986)

    Article  ADS  Google Scholar 

  75. A. Rubtsov, A. Lichtenstein, J. Exp. Theoret. Phys. Lett. 80(1), 61 (2004)

    Article  Google Scholar 

  76. A.N. Rubtsov, V.V. Savkin, A.I. Lichtenstein, Phys. Rev. B 72, 035122 (2005)

    Article  ADS  Google Scholar 

  77. E. Gull, P. Werner, O. Parcollet, M. Troyer, EPL (Europhys. Lett.) 82(5), 57003 (2008)

    Article  ADS  Google Scholar 

  78. P. Werner, A. Comanac, L. de’ Medici, M. Troyer, A.J. Millis, Phys. Rev. Lett. 97, 076405 (2006)

    Google Scholar 

  79. P. Werner, A.J. Millis, Phys. Rev. Lett. 99, 146404 (2007)

    Article  ADS  Google Scholar 

  80. P. Werner, A.J. Millis, Phys. Rev. Lett. 104, 146401 (2010)

    Article  ADS  Google Scholar 

  81. I.G. Lang, Y.A. Firsov, Sov. Phys. JETP 16, 1301 (1963)

    ADS  Google Scholar 

  82. K. Steiner, Y. Nomura, P. Werner, Phys. Rev. B 92, 115123 (2015)

    Article  ADS  Google Scholar 

  83. N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, E. Teller, J. Chem. Phys. 21(6), 1087 (1953)

    Article  ADS  Google Scholar 

  84. W.K. Hastings, Biometrika 57, 97 (1970)

    Article  MathSciNet  Google Scholar 

  85. P. Werner, A.J. Millis, Phys. Rev. B 74, 155107 (2006)

    Article  ADS  Google Scholar 

  86. K. Haule, Phys. Rev. B 75, 155113 (2007)

    Article  ADS  Google Scholar 

  87. N. Parragh, A. Toschi, K. Held, G. Sangiovanni, Phys. Rev. B 86, 155158 (2012)

    Article  ADS  Google Scholar 

  88. H. Shinaoka, M. Dolfi, M. Troyer, P. Werner, J. Stat. Mech. Theory Exp. 2014(6), P06012 (2014)

    Article  MathSciNet  Google Scholar 

  89. M. Matsumoto, T. Nishimura, A.C.M. Trans, Model. Comput. Simul. 8(1), 3 (1998)

    Article  Google Scholar 

  90. J. Sherman, W.J. Morrison, Ann. Math. Stat. 20(4), 620 (1949)

    Article  Google Scholar 

  91. J. Sherman, W.J. Morrison, Ann. Math. Stat. 21(1), 124 (1950)

    Article  MathSciNet  Google Scholar 

  92. A. Georges, G. Kotliar, W. Krauth, Zeitschrift für Phys. B Condens. Matter 92(3), 313 (1993)

    Google Scholar 

  93. A. Koga, P. Werner, Phys. Rev. A 84, 023638 (2011)

    Article  ADS  Google Scholar 

  94. Y. Murakami, P. Werner, N. Tsuji, H. Aoki, Phys. Rev. B 88, 125126 (2013)

    Article  ADS  Google Scholar 

  95. V.I. Anisimov, F. Aryasetiawan, A.I. Lichtenstein, J. Phys.: Condens. Matter 9(4), 767 (1997)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yusuke Nomura .

Appendix: Supplemental Information for DFPT

Appendix: Supplemental Information for DFPT

2.1.1 A. Expression for Interatomic Force Constants with Non-local Pseudopotential

In Sect. 2.2.4, the expression of the interatomic force constants is based on the locality of the ionic potential. However, in the actual DFPT calculations with the plane-wave basis, the true ionic potential, which is local, is replaced by the pseudopotential. When the pseudopotential has non-local components, i.e., depends on two coordinates \(\mathbf{r}\) and \(\mathbf{r'}\),Footnote 16 we need some modifications in the equations. The generalized expression for the second derivative of the energy with respect to parameters \(\{ \lambda _i \}\) reads

$$\begin{aligned} \frac{\partial ^{2} E_{\lambda }}{\partial \lambda _{i} \partial \lambda _{j}} = \sum _{\mathbf{k}} \sum _{n}^{\mathrm{occ.}} \Biggl [ \Bigl \langle \frac{\psi _{n \mathbf{k}}}{\partial \lambda _{i} }\Bigl |\frac{\partial V_{\lambda }}{\partial \lambda _{j}} \Bigr | \psi _{n \mathbf{k}} \Bigr \rangle +\Bigl \langle \psi _{n \mathbf{k}}\Bigl |\frac{\partial V_{\lambda }}{\partial \lambda _{j}} \Bigr | \frac{\psi _{n \mathbf{k}}}{\partial \lambda _{i}} \Bigr \rangle + \Bigl \langle \psi _{n \mathbf{k}}\Bigl |\frac{\partial ^{2} V_{\lambda }}{\partial \lambda _{i}\partial \lambda _{j}} \Bigr | \psi _{n \mathbf{k}} \Bigr \rangle \Biggr ] \end{aligned}$$
(2.277)

with \(\psi _{n \mathbf{k}}\) being the one-particle wave function with the band n and the wave vector \(\mathbf{k}\). Then, the electronic contribution to the interatomic force constant \(^{el}C_{\kappa \kappa ^{\prime }}^{\alpha \alpha ^{\prime }}(\mathbf{q})\), i.e., the contribution other than the ionic contribution \(\partial E_\mathrm{N} ( \{ \mathbf R \}) / \partial u_{\kappa }^{*\alpha } (\mathbf{q}) \partial u_{\kappa ^{\prime }}^{\alpha ^{\prime }}(\mathbf{q}) \), is given by

$$\begin{aligned} ^{el}C_{\kappa \kappa ^{\prime }}^{\alpha \alpha ^{\prime }}(\mathbf{q})= & {} \Biggl [ \sum _{\mathbf{k}} \! \sum _{n}^\mathrm{occ.} \ \Biggl ( \frac{4}{N} \Bigl \langle \frac{\psi _{n \mathbf{k}}}{\partial u_{\kappa }^{\alpha } (\mathbf{q})} \Bigl |\frac{\partial V_\mathrm{ion}}{\partial u_{\kappa ^{\prime }}^{\alpha ^{\prime }}(\mathbf q)} \Bigr | \psi _{n \mathbf{k}} \Bigr \rangle + \! \frac{2}{N} \Bigl \langle \psi _{n \mathbf{k}}\Bigl |\frac{\partial ^{2} V_\mathrm{ion}}{\partial u_{\kappa }^{*\alpha } (\mathbf{q}) \partial u_{\kappa ^{\prime }}^{\alpha ^{\prime }}(\mathbf{q})} \Bigr | \psi _{n \mathbf{k}} \Bigr \rangle \Biggr ) \ \Biggr ]_{u=0} \nonumber \\= & {} \Biggl [ \sum _{\mathbf{k}} \sum _{n}^\mathrm{occ.} \ \Biggl ( \frac{4}{N} \Bigl \langle \frac{\psi _{n \mathbf{k}}}{\partial u_{\kappa }^{\alpha } (\mathbf{q})} \Bigl |\frac{\partial V_\mathrm{ion}}{\partial u_{\kappa ^{\prime }}^{\alpha ^{\prime }}(\mathbf q)} \Bigr | \psi _{n \mathbf{k}} \Bigr \rangle \nonumber \\&+ \, \delta _{\kappa \kappa ^{\prime }}\frac{2}{N} \Bigl \langle \psi _{n \mathbf{k}}\Bigl |\frac{\partial ^{2} V_\mathrm{ion}}{\partial u_{\kappa }^{\alpha } (\mathbf{q}\!=\!0) \partial u_{\kappa }^{\alpha ^{\prime }}(\mathbf{q}\!=\!0)} \Bigr | \psi _{n \mathbf{k}} \Bigr \rangle \Biggr ) \ \Biggr ]_{u=0} \end{aligned}$$
(2.278)

2.1.2 B. Confirmation of the Equality \(\varSigma = \varSigma _t + \varSigma _r\) in Sect. 2.2.5.2

Here, we show that the equality \(\varSigma = \varSigma _t + \varSigma _r\) in Sect. 2.2.5.2 indeed holds. In principle, the self-energy \(\varSigma \), the electron-phonon coupling g, the polarization function \(\chi ^0\), and so on, are expressed as matrices. In this section, for the sake of simplicity, we treat them as if they were scalar quantities. One can easily extend the proof to the case where they are matrices. \(\varSigma _t = | g^{(p)} | ^2 \chi ^{t}_\mathrm{{LDA}}\) is rewritten as

$$\begin{aligned} \varSigma _t= & {} | g^{(p)}|^2 \frac{\chi ^0_t}{ 1 - \tilde{W}^{(p)} \chi ^0_t} \nonumber \\= & {} | g^{(b)}|^2 \frac{1}{1 - \tilde{v} \chi ^0_r } \frac{\chi ^0_t}{ 1 - \tilde{W}^{(p)} \chi ^0_t} \frac{1}{1 - \tilde{v} \chi ^0_r } \nonumber \\= & {} | g^{(b)}|^2 \left( 1 + \frac{\tilde{v} \chi ^0_r}{1 - \tilde{v} \chi ^0_r } \right) \frac{\chi ^0_t}{ 1 - \tilde{W}^{(p)} \chi ^0_t} \left( 1 + \frac{\tilde{v} \chi ^0_r}{1 - \tilde{v} \chi ^0_r } \right) \nonumber \\= & {} | g^{(b)}|^2 \left( 1 + \chi ^0_r\tilde{W}^{(p)} \right) \frac{\chi ^0_t}{ 1 - \tilde{W}^{(p)} \chi ^0_t} \left( 1 + \tilde{W}^{(p)} \chi ^0_r \right) \nonumber \\= & {} | g^{(b)}|^2 \biggl [ \ \frac{\chi ^0_t}{ 1 - \tilde{W}^{(p)} \chi ^0_t} + \chi ^0_r \frac{\tilde{W}^{(p)} }{ 1 - \tilde{W}^{(p)} \chi ^0_t} \chi ^0_t \nonumber \\&+\, \chi ^0_t \frac{\tilde{W}^{(p)} }{ 1 - \tilde{W}^{(p)} \chi ^0_t}\chi ^0_r + \chi ^0_r \tilde{W}^{(p)} \frac{\chi ^0_t}{ 1 - \tilde{W}^{(p)} \chi ^0_t} \tilde{W}^{(p)} \chi ^0_r \ \biggr ] \nonumber \\= & {} | g^{(b)}|^2 \biggl [ \ \chi ^0_t + \chi ^0_t \tilde{W}^{(f)} \chi ^0_t + \chi ^0_r \tilde{W}^{(f)} \chi ^0_t + \chi ^0_t \tilde{W}^{(f)} \chi ^0_r + \chi ^0_r \tilde{W}^{(p)} \frac{\chi ^0_t}{ 1 - \tilde{W}^{(p)} \chi ^0_t} \tilde{W}^{(p)} \chi ^0_r \ \biggr ]. \nonumber \\ \end{aligned}$$
(2.279)

Similarly, \(\varSigma _r = | g^{(b)} | ^2 \chi ^{r}_\mathrm{{LDA}}\) is rewritten as

$$\begin{aligned} \varSigma _r = | g^{(b)}|^2 \frac{\chi ^0_r}{ 1 - \tilde{v} \chi ^0_r} = | g^{(b)}|^2\biggl [ \ \chi ^0_r + \chi ^0_r \tilde{W}^{(p)} \chi ^0_r \ \biggr ]. \end{aligned}$$
(2.280)

Using the equality

$$\begin{aligned} \tilde{W}^{(p)} + \tilde{W}^{(p)} \frac{\chi ^0_t}{ 1 - \tilde{W}^{(p)} \chi ^0_t} \tilde{W}^{(p)} = \frac{\tilde{W}^{(p)} }{ 1 - \tilde{W}^{(p)} \chi ^0_t} = \tilde{W}^{(f)}, \end{aligned}$$
(2.281)

one can show that \(\varSigma _t + \varSigma _r\) is expressed as

$$\begin{aligned} \varSigma _t +\varSigma _r= & {} | g^{(b)}|^2\biggl [ \ \chi ^0_t + \chi ^0_r + \bigl ( \chi ^0_t + \chi ^0_r \bigr ) \tilde{W}^{(f)} \bigl ( \chi ^0_t + \chi ^0_r \bigr ) \ \biggr ] \nonumber \\= & {} | g^{(b)}|^2\biggl [ \ \chi ^0 + \chi ^0 \tilde{W}^{(f)} \chi ^0 \ \biggr ] \nonumber \\= & {} | g^{(b)}|^2 \chi _\mathrm{{LDA}}, \end{aligned}$$
(2.282)

which agrees with the expression for \(\varSigma \) in Eq. (2.122).

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Nomura, Y. (2016). Methods: Ab Initio Downfolding and Model-Calculation Techniques. In: Ab Initio Studies on Superconductivity in Alkali-Doped Fullerides. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-10-1442-0_2

Download citation

Publish with us

Policies and ethics