Skip to main content

Pathophysiology of Vascular Cognitive Impairment (II): Amyloid Contribution in Vascular Cognitive Impairment

  • 529 Accesses

Part of the Stroke Revisited book series (STROREV)

Abstract

Both clinical and preclinical evidences have emerged over the past two decades supporting a strong relationship between vascular risk factors and Alzheimer’s disease (AD). Vascular risk factors can induce silent cerebrovascular lesions that lower the threshold of dementia in subjects with AD pathology, and/or it may directly induce the development of AD pathology mediated by neurovascular unit dysfunction. Given vascular risk factors are also associated with stroke, recent studies utilizing in vivo amyloid PET also investigated the role of AD pathology in stroke and poststroke dementia. These studies found that AD pathology can be found in about 30% of patients with poststroke dementia. Its presence significantly lowers the threshold for developing dementia if a stroke occurs and is associated with a rapid cognitive decline in the long term after stroke. Understanding the above relationships between vascular risk factors, AD, and stroke has important implications in the prevention and treatment of AD and vascular cognitive impairment.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-981-10-1433-8_8
  • Chapter length: 11 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   149.00
Price excludes VAT (USA)
  • ISBN: 978-981-10-1433-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   199.99
Price excludes VAT (USA)
Fig. 8.1
Fig. 8.2

References

  1. Jack CR, Bennett DA, Blennow K, et al. NIA-AA research framework: toward a biological definition of Alzheimer’s disease. Alzheimers Dement. 2018;14(4):535–62.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  2. Román GC, Tatemichi TK, Erkinjuntti T, et al. Vascular dementia. Diagnostic criteria for research studies: report of the NINDS-AIREN International Workshop. Neurology. 1993;43(2):250–60.

    PubMed  CrossRef  Google Scholar 

  3. Sachdev P, Kalaria R, O’Brien J, et al. Diagnostic criteria for vascular cognitive disorders: a VASCOG statement. Alzheimer Dis Assoc Disord. 2014;28(3):206–18.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  4. McKhann G, Drachman D, Folstein M, et al. Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology. 1984;34(7):939–44.

    CAS  PubMed  CrossRef  Google Scholar 

  5. Morimatsu M, Hirai S, Muramatsu A, et al. Senile degenerative brain lesions and dementia. J Am Geriatr Soc. 1975;23(9):390–406.

    CAS  PubMed  CrossRef  Google Scholar 

  6. Mok V, Leung EYL, Chu W, et al. Pittsburgh compound B binding in poststroke dementia. J Neurol Sci. 2010;290(1–2):135–7.

    CAS  PubMed  CrossRef  Google Scholar 

  7. Kivipelto M, Helkala E-L, Laakso MP, et al. Midlife vascular risk factors and Alzheimer’s disease in later life: longitudinal, population based study. BMJ. 2001;322(7300):1447–51.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  8. Skoog I, Nilsson L, Persson G, et al. 15-year longitudinal study of blood pressure and dementia. Lancet. 1996;347(9009):1141–5.

    CAS  PubMed  CrossRef  Google Scholar 

  9. Launer LJ, Ross GW, Petrovitch H, et al. Midlife blood pressure and dementia: the Honolulu–Asia aging study. Neurobiol Aging. 2000;21(1):49–55.

    CAS  PubMed  CrossRef  Google Scholar 

  10. Ott A, Stolk R, Hofman A, et al. Association of diabetes mellitus and dementia: the Rotterdam Study. Diabetologia. 1996;39(11):1392–7.

    CAS  PubMed  CrossRef  Google Scholar 

  11. Leibson CL, Rocca WA, Hanson V, et al. Risk of dementia among persons with diabetes mellitus: a population-based cohort study. Am J Epidemiol. 1997;145(4):301–8.

    CAS  PubMed  CrossRef  Google Scholar 

  12. Gustafson D, Rothenberg E, Blennow K, et al. An 18-year follow-up of overweight and risk of Alzheimer disease. Arch Intern Med. 2003;163(13):1524–8.

    PubMed  CrossRef  Google Scholar 

  13. Ott A, Slooter A, Hofman A, et al. Smoking and risk of dementia and Alzheimer’s disease in a population-based cohort study: the Rotterdam Study. Lancet. 1998;351(9119):1840–3.

    CAS  PubMed  Google Scholar 

  14. Neuropathology Group, Medical Research Council Cognitive Function and Aging Study. Pathological correlates of late-onset dementia in a multicentre, community-based population in England and Wales. Lancet. 2001;357(9251):169–75.

    CrossRef  Google Scholar 

  15. Schneider JA, Arvanitakis Z, Bang W, et al. Mixed brain pathologies account for most dementia cases in community-dwelling older persons. Neurology. 2007;69(24):2197–204.

    PubMed  CrossRef  Google Scholar 

  16. Snowdon DA, Greiner LH, Mortimer JA, et al. Brain infarction and the clinical expression of Alzheimer disease: the Nun Study. JAMA. 1997;277(10):813–7.

    CAS  PubMed  Google Scholar 

  17. Schneider J, Wilson R, Bienias J, et al. Cerebral infarctions and the likelihood of dementia from Alzheimer disease pathology. Neurology. 2004;62(7):1148–55.

    CAS  PubMed  CrossRef  Google Scholar 

  18. Petrovitch H, White L, Izmirilian G, et al. Midlife blood pressure and neuritic plaques, neurofibrillary tangles, and brain weight at death: the HAAS. Neurobiol Aging. 2000;21(1):57–62.

    CAS  PubMed  CrossRef  Google Scholar 

  19. Gottesman RF, Albert MS, Alonso A, et al. Associations between midlife vascular risk factors and 25-year incident dementia in the Atherosclerosis Risk in Communities (ARIC) cohort. JAMA Neurol. 2017;74(10):1246–54.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  20. Iturria-Medina Y, Sotero R, Toussaint P, et al. Early role of vascular dysregulation on late-onset Alzheimer’s disease based on multifactorial data-driven analysis. Nat Commun. 2016;7:11934.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  21. Norton S, Matthews FE, Barnes DE, et al. Potential for primary prevention of Alzheimer’s disease: an analysis of population-based data. Lancet Neurol. 2014;13(8):788–94.

    PubMed  CrossRef  Google Scholar 

  22. Sweeney MD, Ayyadurai S, Zlokovic BV. Pericytes of the neurovascular unit: key functions and signaling pathways. Nat Neurosci. 2016;19(6):771–83.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  23. Attwell D, Buchan AM, Charpak S, et al. Glial and neuronal control of brain blood flow. Nature. 2010;468(7321):232–43.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  24. Hall CN, Reynell C, Gesslein B, et al. Capillary pericytes regulate cerebral blood flow in health and disease. Nature. 2014;508(7494):55–60.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  25. Mishra A, Reynolds JP, Chen Y, et al. Astrocytes mediate neurovascular signaling to capillary pericytes but not to arterioles. Nat Neurosci. 2016;19(12):1619–27.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  26. Sengillo J, Winkler E, Walker C, et al. Deficiency in mural vascular cells coincides with blood–brain barrier disruption in Alzheimer’s disease. Brain Pathol. 2013;23(3):303–10.

    PubMed  CrossRef  Google Scholar 

  27. Armulik A, Genové G, Mäe M, et al. Pericytes regulate the blood-brain barrier. Nature. 2010;468(7323):557–61.

    CAS  CrossRef  PubMed  Google Scholar 

  28. Daneman R, Zhou L, Kebede A, et al. Pericytes are required for blood–brain barrier integrity during embryogenesis. Nature. 2010;468(7323):562–6.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  29. Kisler K, Nelson AR, Rege SV, et al. Pericyte degeneration leads to neurovascular uncoupling and limits oxygen supply to brain. Nat Neurosci. 2017;20(3):406–16.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  30. Montagne A, Nikolakopoulou AM, Zhao Z, et al. Pericyte degeneration causes white matter dysfunction in the mouse central nervous system. Nat Med. 2018;24(3):326–37.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  31. Samir K-S, Pirici D, Eileen M, et al. Dense-core plaques in Tg2576 and PSAPP mouse models of Alzheimer’s disease are centered on vessel walls. Am J Pathol. 2005;167(2):527–43.

    CrossRef  Google Scholar 

  32. Winkler E, Nishida Y, Sagare A, et al. GLUT1 reductions exacerbate Alzheimer’s disease vasculo-neuronal dysfunction and degeneration. Nat Neurosci. 2015;18(4):521–30.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  33. Ujiie M, Dickstein DL, Carlow DA, et al. Blood-brain barrier permeability precedes senile plaque formation in an Alzheimer disease model. Microcirculation. 2003;10(6):463–70.

    CAS  PubMed  Google Scholar 

  34. Paul J, Strickland S, Melchor J. Fibrin deposition accelerates neurovascular damage and neuroinflammation in mouse models of Alzheimer’s disease. J Exp Med. 2007;204(8):1999–2008.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  35. Cirrito J, Deane R, Fagan A, et al. P-glycoprotein deficiency at the blood-brain barrier increases amyloid-β deposition in an Alzheimer disease mouse model. J Clin Invest. 2005;115(11):3285–90.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  36. Sagare AP, Bell RD, Zhao Z, et al. Pericyte loss influences Alzheimer-like neurodegeneration in mice. Nat Commun. 2013;4(1):2932.

    PubMed  CrossRef  CAS  Google Scholar 

  37. Verbeek MM, Waal RM, Schipper JJ, et al. Rapid degeneration of cultured human brain pericytes by amyloid β protein. J Neurochem. 1997;68(3):1135–41.

    CAS  PubMed  CrossRef  Google Scholar 

  38. Nortley R, Korte N, Izquierdo P, Hirunpattarasilp C, Mishra A, Jaunmuktane Z, et al. Amyloid β oligomers constrict human capillaries in Alzheimer’s disease via signaling to pericytes. Science. 2019;365(6450):eaav9518. https://science.sciencemag.org/content/365/6450/eaav9518.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  39. Verghese PB, Castellano JM, Holtzman DM. Apolipoprotein E in Alzheimer’s disease and other neurological disorders. Lancet Neurol. 2011;10(3):241–52.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  40. Liu C-C, Zhao N, Fu Y, et al. ApoE4 accelerates early seeding of amyloid pathology. Neuron. 2017;96(5):1024–32.e3.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  41. Shi Y, Yamada K, Liddelow S, et al. ApoE4 markedly exacerbates tau-mediated neurodegeneration in a mouse model of tauopathy. Nature. 2017;549(7673):523–7.

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  42. Ali H-M, Thomas KL, Wagner DD. ApoE deficiency leads to a progressive age-dependent blood-brain barrier leakage. Am J Physiol Cell Physiol. 2007;292(4):C1256–62.

    CrossRef  CAS  Google Scholar 

  43. Bell RD, Winkler EA, Singh I, et al. Apolipoprotein E controls cerebrovascular integrity via cyclophilin A. Nature. 2012;485(7399):512–6.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  44. Halliday MR, Rege SV, Ma Q, et al. Accelerated pericyte degeneration and blood–brain barrier breakdown in apolipoprotein E4 carriers with Alzheimer’s disease. J Cereb Bloow Flow Metab. 2015;36(1):216–27.

    CrossRef  CAS  Google Scholar 

  45. Methia N, André P, Hafezi-Moghadam A, et al. ApoE deficiency compromises the blood brain barrier especially after injury. Mol Med. 2001;7(12):810–5.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  46. Østergaard L, Engedal TS, Moreton F, et al. Cerebral small vessel disease: capillary pathways to stroke and cognitive decline. J Cereb Blood Flow Metab. 2016;36(2):302–25.

    PubMed  CrossRef  CAS  Google Scholar 

  47. Kisler K, Nelson AR, Montagne A, et al. Cerebral blood flow regulation and neurovascular dysfunction in Alzheimer disease. Nat Rev Neurosci. 2017;18(7):419–34.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  48. Pendlebury ST, Rothwell PM. Prevalence, incidence, and factors associated with pre-stroke and post-stroke dementia: a systematic review and meta-analysis. Lancet Neurol. 2009;8(11):1006–18.

    PubMed  CrossRef  Google Scholar 

  49. Jokinen H, Melkas S, Ylikoski R, et al. Post-stroke cognitive impairment is common even after successful clinical recovery. Eur J Neurol. 2015;22(9):1288–94.

    CAS  PubMed  CrossRef  Google Scholar 

  50. Mok VCT, Lam BYK, Wong A, et al. Early-onset and delayed-onset poststroke dementia—revisiting the mechanisms. Nat Rev Neurol. 2017;13:148–59.

    PubMed  CrossRef  Google Scholar 

  51. Erkinjuntti T, Haltia M, Palo J, et al. Accuracy of the clinical diagnosis of vascular dementia: a prospective clinical and post-mortem neuropathological study. J Neurol Neurosurg Psychiatry. 1988;51(8):1037–44.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  52. Knopman DS, Parisi JE, Boeve BF, et al. Vascular dementia in a population-based autopsy study. Arch Neurol. 2003;60(4):569–75.

    PubMed  CrossRef  Google Scholar 

  53. Allan LM, Rowan EN, Firbank MJ, et al. Long term incidence of dementia, predictors of mortality and pathological diagnosis in older stroke survivors. Brain. 2011;134(12):3716–27.

    PubMed  CrossRef  Google Scholar 

  54. Nolan KA, Lino MM, Seligmann Arthur W, et al. Absence of vascular dementia in an autopsy series from a dementia clinic. J Am Geriatr Soc. 2015;46(5):597–604.

    CrossRef  Google Scholar 

  55. Mok VC, Lam BY, Wang Z, et al. Delayed-onset dementia after stroke or transient ischemic attack. Alzheimers Dement. 2016;12(11):1167–76.

    PubMed  CrossRef  Google Scholar 

  56. Shim YS, Roe CM, Buckles VD, et al. Clinicopathologic study of Alzheimer’s disease: Alzheimer mimics. J Alzheimers Dis. 2013;35(4):799–811.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  57. Kaerst L, Kuhlmann A, Wedekind D, et al. Cerebrospinal fluid biomarkers in Alzheimer’s disease, vascular dementia and ischemic stroke patients: a critical analysis. J Neurol. 2013;260(11):2722–7.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  58. Klunk WE, Engler H, Nordberg A, et al. Imaging brain amyloid in Alzheimer’s disease with Pittsburgh Compound-B. Ann Neurol. 2004;55(3):306–19.

    CAS  PubMed  CrossRef  Google Scholar 

  59. Yang J, Wong A, Wang Z, et al. Risk factors for incident dementia after stroke and transient ischemic attack. Alzheimers Dement. 2015;11(1):16–23.

    PubMed  CrossRef  Google Scholar 

  60. Liu W, Wong A, Au L, et al. Influence of amyloid-β on cognitive decline after stroke/transient ischemic attack: three-year longitudinal study. Stroke. 2015;46(11):3074–80.

    CAS  PubMed  CrossRef  Google Scholar 

  61. Jansen W, Ossenkoppele R, Knol D, et al. Prevalence of cerebral amyloid pathology in persons without dementia: a meta-analysis. JAMA. 2015;313(19):1924–38.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  62. Wollenweber FA, Därr S, Müller C, et al. Prevalence of amyloid positron emission tomographic positivity in poststroke mild cognitive impairment. Stroke. 2016;47(10):2645–8.

    PubMed  CrossRef  Google Scholar 

  63. Sahathevan R, Linden T, Villemagne VL, et al. Positron emission tomographic imaging in stroke: cross-sectional and follow-up assessment of amyloid in ischemic stroke. Stroke. 2016;47(1):113–9.

    CAS  PubMed  CrossRef  Google Scholar 

  64. van der Flier WM, Skoog I, Schneider JA, et al. Vascular cognitive impairment. Nat Rev Dis Primers. 2018;4:18003.

    PubMed  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent Chung Tong Mok .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Science+Business Media Singapore

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Ko, H., Lam, B.Y.K., Mok, V.C.T. (2020). Pathophysiology of Vascular Cognitive Impairment (II): Amyloid Contribution in Vascular Cognitive Impairment. In: Lee, SH., Lim, JS. (eds) Stroke Revisited: Vascular Cognitive Impairment. Stroke Revisited. Springer, Singapore. https://doi.org/10.1007/978-981-10-1433-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-1433-8_8

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-1432-1

  • Online ISBN: 978-981-10-1433-8

  • eBook Packages: MedicineMedicine (R0)