Skip to main content

Cerebral Amyloid Angiopathy: Emerging Evidence for Novel Pathophysiology and Pathogenesis

  • Chapter
  • First Online:
Stroke Revisited: Pathophysiology of Stroke

Part of the book series: Stroke Revisited ((STROREV))

  • 1394 Accesses

Abstract

Cerebral amyloid angiopathy (CAA) is cerebrovascular amyloid deposition being classified into several types according to the amyloid protein involved. Of these, sporadic amyloid β-protein (Aβ)-type CAA is most commonly found in older individuals and in patients with Alzheimer’s disease (AD). Cerebral blood vessels affected with CAA are associated with functional and pathological changes (CAA-associated vasculopathies), leading to development of hemorrhagic disorders (lobar intracerebral macrohemorrhage, cortical microhemorrhage, and cortical superficial siderosis/focal convexity subarachnoid hemorrhage), ischemic disorders (white matter disease and cortical microinfarcts), and inflammatory vascular disorders, i.e., CAA-associated inflammation/angiitis; these CAA-related disorders are characterized by unique clinical features and imaging and cerebrospinal fluid abnormalities, contributing to a clinical diagnosis of CAA without brain biopsy. In this review, we particularly focus on topics with emerging evidence for novel pathophysiology and pathogenesis of CAA. They include CAA-related cognitive impairment and neurodegeneration, and CAA-related inflammation and similar disorders associated with Aβ immunotherapies for AD. Furthermore, recent studies indicated that Aβ pathologies, including CAA, would be transmissible in humans as well as experimental settings. Better understanding of mechanisms underlying pathophysiology and pathogenesis of CAA would lead to new strategies for interventions for CAA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Aβ:

amyloid β-protein

AβPP:

β-amyloid precursor protein

ACE:

angiotensin-converting enzyme

ACT:

α1-antichymotrypsin

ACys:

amyloid cystatin C

AD:

Alzheimer’s disease

AGel:

amyloid gelsolin

AL:

amyloid immunoglobulin light chain

APOE:

apolipoprotein E

APOE:

apolipoprotein E gene

APrP:

amyloid prion protein

ARIA:

amyloid-related imaging abnormalities

ARIA-E:

amyloid-related imaging abnormalities-vasogenic edema and sulcal effusions

ARIA-H:

amyloid-related imaging abnormalities -microhemorrhages and hemosiderin deposits

ATTR:

amyloid transthyretin

BOLD:

blood-oxygen-level-dependent

CAA:

cerebral amyloid angiopathy

CAA-ri:

cerebral amyloid angiopathy-related inflammation

CBF:

cerebral blood flow

CJD:

Creutzfeldt–Jakob disease

CMB:

cerebral microbleed

cSAH:

convexity subarachnoid hemorrhage

CSF:

cerebrospinal fluid

cSS:

cortical superficial siderosis

dCJD:

dura mater graft-associated Creutzfeldt–Jakob disease

DMT:

disease-modifying therapies

FDG:

fluorodeoxyglucose

FLAIR:

fluid attenuation inversion recovery

fMRI:

functional MRI

hGH:

human cadaveric pituitary-derived growth hormone

ICH:

intracerebral hemorrhage

iCJD:

iatrogenic CJD

LRP-1:

low-density lipoprotein-receptor related protein

MB:

microbleed

MCI:

mild cognitive impairment

PiB:

Pittsburgh Compound B

PS1:

presenilin 1

p-tau:

phosphorylated tau

p-TDP-43:

phosphorylated transactive response DNA binding protein 43 kDa

SAH:

subarachnoid hemorrhage

sCJD:

sporadic Creutzfeldt-Jakob disease

SVD:

small vessel disease

TDP-43:

transactive response DNA binding protein 43 kDa

TGF-β1:

Another CAA-related gene reported by more than one research group transforming growth factor-β1

VaD:

vascular dementia

WMH:

white matter hyperintensity

References

  1. Yamada M, Naiki H. Cerebral amyloid angiopathy. Prog Mol Biol Transl Sci. 2012;51:41–78.

    Google Scholar 

  2. Yamada M. Predicting cerebral amyloid angiopathy-related intracerebral hemorrhages and other cerebrovascular disorders in Alzheimer’s disease. Front Neurol. 2012;3:25.

    Google Scholar 

  3. Yamada M. Cerebral amyloid angiopathy: emerging concepts. J Stroke. 2015;17:17–30.

    PubMed  PubMed Central  Google Scholar 

  4. Kinnecom C, Lev MH, Wendell L, et al. Course of cerebral amyloid angiopathy-related inflammation. Neurology. 2007;68:1411–6.

    CAS  PubMed  Google Scholar 

  5. Wilson D, Werring DJ. Antithrombotic therapy in patients with cerebral microbleeds. Curr Opin Neurol. 2017;30:38–47.

    CAS  PubMed  Google Scholar 

  6. Linn J, Halpin A, Demaerel P, et al. Prevalence of superficial siderosis in patients with cerebral amyloid angiopathy. Neurology. 2010;74:1346–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Charidimou A, Farid K, Baron JC. Amyloid-PET in sporadic cerebral amyloid angiopathy: a diagnostic accuracy meta-analysis. Neurology. 2017;89:1490–8.

    PubMed  Google Scholar 

  8. Charidimou A, Linn J, Vernooij MW, et al. Cortical superficial siderosis: detection and clinical significance in cerebral amyloid angiopathy and related conditions. Brain. 2015;138:2126–39.

    PubMed  Google Scholar 

  9. Calviere L, Cuvinciuc V, Raposo N, et al. Acute convexity subarachnoid hemorrhage related to cerebral amyloid angiopathy: clinicoradiological features and outcome. J Stroke Cerebrovasc Dis. 2016;25:1009–16.

    PubMed  Google Scholar 

  10. van Veluw SJ, Biessels GJ, Bouvy WH, et al. Cerebral amyloid angiopathy severity is linked to dilation of juxtacortical perivascular spaces. J Cereb Blood Flow Metab. 2016;36:576–80.

    PubMed  Google Scholar 

  11. van Veluw SJ, Charidimou A, van der Kouwe AJ, et al. Microbleed and microinfarct detection in amyloid angiopathy: a high-resolution MRI-histopathology study. Brain. 2016;139:3151–62.

    PubMed  PubMed Central  Google Scholar 

  12. van Opstal AM, van Rooden S, van Harten T, et al. Cerebrovascular function in presymptomatic and symptomatic individuals with hereditary cerebral amyloid angiopathy: a case-control study. Lancet Neurol. 2017;16:115–22.

    PubMed  Google Scholar 

  13. Gurol ME, Becker JA, Fotiadis P, et al. Florbetapir-PET to diagnose cerebral amyloid angiopathy: a prospective study. Neurology. 2016;87:2043–9.

    PubMed  PubMed Central  Google Scholar 

  14. van Etten ES, Verbeek MM, van der Grond J, et al. β-Amyloid in CSF: biomarker for preclinical cerebral amyloid angiopathy. Neurology. 2017;88:169–76.

    PubMed  PubMed Central  Google Scholar 

  15. Piazza F, Greenberg SM, Savoiardo M, et al. Anti-amyloid β autoantibodies in cerebral amyloid angiopathy-related inflammation: implications for amyloid-modifying therapies. Ann Neurol. 2013;73:449–58.

    CAS  PubMed  Google Scholar 

  16. Knudsen KA, Rosand J, Karluk D, et al. Clinical diagnosis of cerebral amyloid angiopathy: validation of the Boston criteria. Neurology. 2001;56:537–9.

    CAS  PubMed  Google Scholar 

  17. Moulin S, Labreuche J, Bombois S, et al. Dementia risk after spontaneous intracerebral haemorrhage: a prospective cohort study. Lancet Neurol. 2016;15:820–9.

    PubMed  Google Scholar 

  18. Case NF, Charlton A, Zwiers A, et al. Cerebral amyloid angiopathy is associated with executive dysfunction and mild cognitive impairment. Stroke. 2016;47:2010–6.

    PubMed  Google Scholar 

  19. Xiong L, Boulouis G, Charidimou A, et al. Dementia incidence and predictors in cerebral amyloid angiopathy patients without intracerebral hemorrhage. J Cereb Blood Flow Metab. 2018;38:241–9.

    Google Scholar 

  20. Ding J, Sigurðsson S, Jónsson PV, et al. Space and location of cerebral microbleeds, cognitive decline, and dementia in the community. Neurology. 2017;88:2089–97.

    PubMed  PubMed Central  Google Scholar 

  21. Romero JR, Beiser A, Himali JJ, et al. Cerebral microbleeds and risk of incident dementia: the Framingham heart study. Neurobiol Aging. 2017;54:94–9.

    PubMed  PubMed Central  Google Scholar 

  22. Shams S, Martola J, Charidimou A, et al. Cortical superficial siderosis: prevalence and biomarker profile in a memory clinic population. Neurology. 2016;87:1110–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Banerjee G, Kim HJ, Fox Z, et al. MRI-visible perivascular space location is associated with Alzheimer’s disease independently of amyloid burden. Brain. 2017;140:1107–16.

    PubMed  Google Scholar 

  24. Noguchi-Shinohara M, Komatsu J, Samuraki M, et al. Cerebral amyloid angiopathy-related microbleeds and cerebrospinal fluid biomarkers in Alzheimer’s disease. J Alzheimers Dis. 2017;55:905–13.

    CAS  PubMed  Google Scholar 

  25. Farid K, Hong YT, Aigbirhio FI, et al. Early-phase 11C-PiB PET in amyloid angiopathy-related symptomatic cerebral hemorrhage: potential diagnostic value? PLoS One. 2015;10:e0139926.

    PubMed  PubMed Central  Google Scholar 

  26. Yamada M, Itoh Y, Suematsu N, et al. Vascular variant of Alzheimer’s disease characterized by severe plaque-like β protein angiopathy. Dement Geriatr Cogn Disord. 1997;8:163–8.

    CAS  PubMed  Google Scholar 

  27. Arvanitakis Z, Leurgans SE, Wang Z, et al. Cerebral amyloid angiopathy pathology and cognitive domains in older persons. Ann Neurol. 2011;69:320–7.

    PubMed  Google Scholar 

  28. Boyle PA, Yu L, Nag S, et al. Cerebral amyloid angiopathy and cognitive outcomes in community-based older persons. Neurology. 2015;85:1930–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Boyle PA, Yang J, Yu L, et al. Varied effects of age-related neuropathologies on the trajectory of late life cognitive decline. Brain. 2017;140:804–12.

    PubMed  PubMed Central  Google Scholar 

  30. Samuraki M, Matsunari I, Yoshita M, et al. Cerebral amyloid angiopathy-related microbleeds correlate with glucose metabolism and brain volume in Alzheimer’s disease. J Alzheimers Dis. 2015;48:517–28.

    CAS  PubMed  Google Scholar 

  31. Fotiadis P, van Rooden S, van der Grond J, et al. Cortical atrophy in patients with cerebral amyloid angiopathy: a case-control study. Lancet Neurol. 2016;15:811–9.

    PubMed  PubMed Central  Google Scholar 

  32. Gregg NM, Kim AE, Gurol ME, et al. Incidental cerebral microbleeds and cerebral blood flow in elderly individuals. JAMA Neurol. 2015;72:1021–8.

    PubMed  PubMed Central  Google Scholar 

  33. Reijmer YD, Fotiadis P, Riley GA, et al. Progression of brain network alterations in cerebral amyloid angiopathy. Stroke. 2016;47:2470–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Yamada M, Itoh Y, Shintaku M, et al. Immune reactions associated with cerebral amyloid angiopathy. Stroke. 1996;27:1155–62.

    CAS  PubMed  Google Scholar 

  35. Chung KK, Anderson NE, Hutchinson D, et al. Cerebral amyloid angiopathy related inflammation: three case reports and a review. J Neurol Neurosurg Psychiatry. 2011;82:20–6.

    PubMed  Google Scholar 

  36. Auriel E, Charidimou A, Gurol ME, et al. Validation of clinicoradiological criteria for the diagnosis of cerebral amyloid angiopathy-related inflammation. JAMA Neurol. 2016;73:197–202.

    PubMed  Google Scholar 

  37. Boche D, Zotova E, Weller RO, et al. Consequence of Aβ immunization on the vasculature of human Alzheimer’s disease brain. Brain. 2008;131:3299–310.

    CAS  PubMed  Google Scholar 

  38. Sperling R, Salloway S, Brooks DJ, et al. Amyloid-related imaging abnormalities in patients with Alzheimer’s disease treated with bapineuzumab: a retrospective analysis. Lancet Neurol. 2012;11:241–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Sevigny J, Chiao P, Bussière T, et al. The antibody aducanumab reduces Aβ plaques in Alzheimer’s disease. Nature. 2016;537:50–6.

    CAS  PubMed  Google Scholar 

  40. Sakai K, Boche D, Carare R, et al. Aβ immunotherapy for Alzheimer’s disease: effects on apoE and cerebral vasculopathy. Acta Neuropathol. 2014;128:777–89.

    CAS  PubMed  Google Scholar 

  41. Carlson C, Estergard W, Oh J, et al. Prevalence of asymptomatic vasogenic edema in pretreatment Alzheimer’s disease study cohorts from phase 3 trials of semagacestat and solanezumab. Alzheimers Dement. 2011;7:396–401.

    CAS  PubMed  Google Scholar 

  42. Bales KR, O’Neill SM, Pozdnyakov N, et al. Passive immunotherapy targeting amyloid-β reduces cerebral amyloid angiopathy and improves vascular reactivity. Brain. 2016;139:563–77.

    PubMed  Google Scholar 

  43. Leurent C, Goodman JA, Zhang Y et al. Immunotherapy with ponezumab for probable cerebral amyloid angiopathy. Ann Clin Transl Neurol. 2019;6:795–806.

    Google Scholar 

  44. Walker LC, Jucker M. Neurodegenerative diseases: expanding the prion concept. Annu Rev Neurosci. 2015;38:87–103.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Jaunmuktane Z, Mead S, Ellis M, et al. Evidence for human transmission of amyloid-β pathology and cerebral amyloid angiopathy. Nature. 2015;525:247–50.

    CAS  PubMed  Google Scholar 

  46. Ritchie DL, Adlard P, Peden AH, et al. (Acta Neuropathol) Amyloid-β accumulation in the CNS in human growth hormone recipients in the UK. Acta Neuropathol. 2017;134:221–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Hamaguchi T, Taniguchi Y, Sakai K, et al. Significant association of cadaveric dura mater grafting with subpial Aβ deposition and meningeal amyloid angiopathy. Acta Neuropathol. 2016;132:313–5.

    PubMed  Google Scholar 

  48. Hamaguchi T, Eisele YS, Varvel NH, et al. The presence of Aβ seeds, and not age per se, is critical to the initiation of Aβ deposition in the brain. Acta Neuropathol. 2012;123:31–7.

    CAS  PubMed  Google Scholar 

  49. Kovacs GG, Ferrer I, Grinberg LT, et al. Aging-related tau astrogliopathy (ARTAG): harmonized evaluation strategy. Acta Neuropathol. 2016;131:87–102.

    CAS  PubMed  Google Scholar 

  50. Yamada M, Hamaguchi T, Sakai K. Acquired cerebral amyloid angiopathy: An emerging concept. Prog Mol Biol Transl Sci. 2019;168:85–95.

    Google Scholar 

  51. Eisele YS, Obermüller U, Heilbronner G et al. Peripherally applied Aβ-containing inoculates induce cerebral β-amyloidosis. Science. 2010;330:980–2.

    Google Scholar 

  52. Vonsattel JP, Myers RH, Hedley-Whyte ET, et al. Cerebral amyloid angiopathy without and with cerebral hemorrhages: a comparative histological study. Ann Neurol. 1991;30:637–49.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masahito Yamada .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media Singapore

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yamada, M., Sakai, K., Hamaguchi, T., Noguchi-Shinohara, M. (2020). Cerebral Amyloid Angiopathy: Emerging Evidence for Novel Pathophysiology and Pathogenesis. In: Lee, SH. (eds) Stroke Revisited: Pathophysiology of Stroke. Stroke Revisited. Springer, Singapore. https://doi.org/10.1007/978-981-10-1430-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-1430-7_7

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-1429-1

  • Online ISBN: 978-981-10-1430-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics