Skip to main content

Mechanism of Recovery After Stroke

  • Chapter
  • First Online:
Stroke Revisited: Pathophysiology of Stroke

Part of the book series: Stroke Revisited ((STROREV))

  • 1532 Accesses

Abstract

Stroke is one of the biggest health problems in the world, especially considering the aging global population. Stroke causes diverse neurological sequelae, for which there is still no cure. In the clinic, it is not rare to see patients showing improvement in their neurological sequelae several weeks or months after stroke compared with their status in the early post-stroke stages. These phenomena are thought to be associated with the natural recovery process after stroke. The exact mechanisms underlying this recovery process are not yet known, but several plausible mechanisms have been suggested. The first is synaptic plasticity, which occurs through the processes of axonal sprouting and synaptogenesis. These processes occur in the peri-infarct area of the brain, but can sometimes be seen in the contralateral hemisphere. The second mechanism is neurogenesis, which arises from endogenous neural stem cells in the subventricular zone and the dentate gyrus in the hippocampus. In this chapter, the suggested plausible mechanisms underlying the natural recovery process that occurs after stroke will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hebb DO. Organization of behavior. New York, NY: Wiley; 1949.

    Google Scholar 

  2. Hess G, Donoghue JP. Long-term potentiation and long-term depression of horizontal connections in rat motor cortex. Acta Neurobiol Exp (Wars). 1996;56(1):397–405.

    CAS  Google Scholar 

  3. Butefisch CM, Davis BC, Wise SP, Sawaki L, Kopylev L, Classen J, et al. Mechanisms of use-dependent plasticity in the human motor cortex. Proc Natl Acad Sci U S A. 2000;97(7):3661–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. He SQ, Dum RP, Strick PL. Topographic organization of corticospinal projections from the frontal lobe: motor areas on the lateral surface of the hemisphere. J Neurosci. 1993;13(3):952–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ward NS, Brown MM, Thompson AJ, Frackowiak RS. Neural correlates of outcome after stroke: a cross-sectional fMRI study. Brain. 2003;126(Pt 6):1430–48.

    Article  CAS  PubMed  Google Scholar 

  6. Ward NS, Brown MM, Thompson AJ, Frackowiak RS. Neural correlates of motor recovery after stroke: a longitudinal fMRI study. Brain. 2003;126(Pt 11):2476–96.

    Article  CAS  PubMed  Google Scholar 

  7. Chollet F, DiPiero V, Wise RJ, Brooks DJ, Dolan RJ, Frackowiak RS. The functional anatomy of motor recovery after stroke in humans: a study with positron emission tomography. Ann Neurol. 1991;29(1):63–71.

    Article  CAS  PubMed  Google Scholar 

  8. Weiller C, Chollet F, Friston KJ, Wise RJ, Frackowiak RS. Functional reorganization of the brain in recovery from striatocapsular infarction in man. Ann Neurol. 1992;31(5):463–72.

    Article  CAS  PubMed  Google Scholar 

  9. Nhan H, Barquist K, Bell K, Esselman P, Odderson IR, Cramer SC. Brain function early after stroke in relation to subsequent recovery. J Cereb Blood Flow Metab. 2004;24(7):756–63.

    Article  PubMed  Google Scholar 

  10. de Boissezon X, Demonet JF, Puel M, Marie N, Raboyeau G, Albucher JF, et al. Subcortical aphasia: a longitudinal PET study. Stroke. 2005;36(7):1467–73.

    Article  PubMed  Google Scholar 

  11. Musso M, Weiller C, Kiebel S, Muller SP, Bulau P, Rijntjes M. Training-induced brain plasticity in aphasia. Brain. 1999;122(Pt 9):1781–90.

    Article  PubMed  Google Scholar 

  12. Butefisch CM. Plasticity in the human cerebral cortex: lessons from the normal brain and from stroke. Neuroscientist. 2004;10(2):163–73.

    Article  PubMed  Google Scholar 

  13. Heiss WD, Kessler J, Thiel A, Ghaemi M, Karbe H. Differential capacity of left and right hemispheric areas for compensation of poststroke aphasia. Ann Neurol. 1999;45(4):430–8.

    Article  CAS  PubMed  Google Scholar 

  14. Serrien DJ, Strens LH, Cassidy MJ, Thompson AJ, Brown P. Functional significance of the ipsilateral hemisphere during movement of the affected hand after stroke. Exp Neurol. 2004;190(2):425–32.

    Article  PubMed  Google Scholar 

  15. Naeser MA, Martin PI, Nicholas M, Baker EH, Seekins H, Kobayashi M, et al. Improved picture naming in chronic aphasia after TMS to part of right Broca's area: an open-protocol study. Brain Lang. 2005;93(1):95–105.

    Article  PubMed  Google Scholar 

  16. Mansur CG, Fregni F, Boggio PS, Riberto M, Gallucci-Neto J, Santos CM, et al. A sham stimulation-controlled trial of rTMS of the unaffected hemisphere in stroke patients. Neurology. 2005;64(10):1802–4.

    Article  CAS  PubMed  Google Scholar 

  17. Carey LM, Abbott DF, Egan GF, Bernhardt J, Donnan GA. Motor impairment and recovery in the upper limb after stroke: behavioral and neuroanatomical correlates. Stroke. 2005;36(3):625–9.

    Article  PubMed  Google Scholar 

  18. Tombari D, Loubinoux I, Pariente J, Gerdelat A, Albucher JF, Tardy J, et al. A longitudinal fMRI study: in recovering and then in clinically stable sub-cortical stroke patients. NeuroImage. 2004;23(3):827–39.

    Article  PubMed  Google Scholar 

  19. Ward NS, Cohen LG. Mechanisms underlying recovery of motor function after stroke. Arch Neurol. 2004;61(12):1844–8.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Kleim JA, Hogg TM, VandenBerg PM, Cooper NR, Bruneau R, Remple M. Cortical synaptogenesis and motor map reorganization occur during late, but not early, phase of motor skill learning. J Neurosci. 2004;24(3):628–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Uesaka N, Ruthazer ES, Yamamoto N. The role of neural activity in cortical axon branching. Neuroscientist. 2006;12(2):102–6.

    Article  PubMed  Google Scholar 

  22. Carmichael ST, Chesselet MF. Synchronous neuronal activity is a signal for axonal sprouting after cortical lesions in the adult. J Neurosci. 2002;22(14):6062–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Whishaw IQ, Pellis SM, Gorny BP, Pellis VC. The impairments in reaching and the movements of compensation in rats with motor cortex lesions: an endpoint, videorecording, and movement notation analysis. Behav Brain Res. 1991;42(1):77–91.

    Article  CAS  PubMed  Google Scholar 

  24. Cirstea MC, Levin MF. Compensatory strategies for reaching in stroke. Brain. 2000;123(Pt 5):940–53.

    Article  PubMed  Google Scholar 

  25. Nishibe M, Barbay S, Guggenmos D, Nudo RJ. Reorganization of motor cortex after controlled cortical impact in rats and implications for functional recovery. J Neurotrauma. 2010;27(12):2221–32.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Nudo RJ, Milliken GW. Reorganization of movement representations in primary motor cortex following focal ischemic infarcts in adult squirrel monkeys. J Neurophysiol. 1996;75(5):2144–9.

    Article  CAS  PubMed  Google Scholar 

  27. Teasell R, Bayona NA, Bitensky J. Plasticity and reorganization of the brain post stroke. Top Stroke Rehabil. 2005;12(3):11–26.

    Article  PubMed  Google Scholar 

  28. Carey JR, Kimberley TJ, Lewis SM, Auerbach EJ, Dorsey L, Rundquist P, et al. Analysis of fMRI and finger tracking training in subjects with chronic stroke. Brain. 2002;125(Pt 4):773–88.

    Article  PubMed  Google Scholar 

  29. Stroemer RP, Kent TA, Hulsebosch CE. Neocortical neural sprouting, synaptogenesis, and behavioral recovery after neocortical infarction in rats. Stroke. 1995;26(11):2135–44.

    Article  CAS  PubMed  Google Scholar 

  30. Carmichael ST. Cellular and molecular mechanisms of neural repair after stroke: making waves. Ann Neurol. 2006;59(5):735–42.

    Article  CAS  PubMed  Google Scholar 

  31. Wei L, Erinjeri JP, Rovainen CM, Woolsey TA. Collateral growth and angiogenesis around cortical stroke. Stroke. 2001;32(9):2179–84.

    Article  CAS  PubMed  Google Scholar 

  32. McNeill TH, Brown SA, Hogg E, Cheng HW, Meshul CK. Synapse replacement in the striatum of the adult rat following unilateral cortex ablation. J Comp Neurol. 2003;467(1):32–43.

    Article  PubMed  Google Scholar 

  33. Waites CL, Craig AM, Garner CC. Mechanisms of vertebrate synaptogenesis. Annu Rev Neurosci. 2005;28:251–74.

    Article  CAS  PubMed  Google Scholar 

  34. Benowitz LI, Carmichael ST. Promoting axonal rewiring to improve outcome after stroke. Neurobiol Dis. 2010;37(2):259–66.

    Article  PubMed  Google Scholar 

  35. Temple S. Division and differentiation of isolated CNS blast cells in microculture. Nature. 1989;340(6233):471–3.

    Article  CAS  PubMed  Google Scholar 

  36. Reynolds BA, Weiss S. Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science. 1992;255(5052):1707–10.

    Article  CAS  PubMed  Google Scholar 

  37. Arvidsson A, Collin T, Kirik D, Kokaia Z, Lindvall O. Neuronal replacement from endogenous precursors in the adult brain after stroke. Nat Med. 2002;8(9):963–70.

    Article  CAS  PubMed  Google Scholar 

  38. Park J, Park HH, Choi H, Kim YS, Yu HJ, Lee KY, et al. Coenzyme Q10 protects neural stem cells against hypoxia by enhancing survival signals. Brain Res. 2012;1478:64–73.

    Article  CAS  PubMed  Google Scholar 

  39. Morrison SJ, Perez SE, Qiao Z, Verdi JM, Hicks C, Weinmaster G, et al. Transient notch activation initiates an irreversible switch from neurogenesis to gliogenesis by neural crest stem cells. Cell. 2000;101(5):499–510.

    Article  CAS  PubMed  Google Scholar 

  40. Lee JS, Hong JM, Moon GJ, Lee PH, Ahn YH, Bang OY, et al. A long-term follow-up study of intravenous autologous mesenchymal stem cell transplantation in patients with ischemic stroke. Stem Cells. 2010;28(6):1099–106.

    Article  PubMed  Google Scholar 

  41. Koh SH, Lo EH. The role of the PI3K pathway in the regeneration of the damaged brain by neural stem cells after cerebral infarction. J Clin Neurol. 2015;11(4):297–304.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Lanner F, Rossant J. The role of FGF/Erk signaling in pluripotent cells. Development. 2010;137(20):3351–60.

    Article  CAS  PubMed  Google Scholar 

  43. Lie DC, Colamarino SA, Song HJ, Desire L, Mira H, Consiglio A, et al. Wnt signalling regulates adult hippocampal neurogenesis. Nature. 2005;437(7063):1370–5.

    Article  CAS  PubMed  Google Scholar 

  44. Faigle R, Song H. Signaling mechanisms regulating adult neural stem cells and neurogenesis. Biochim Biophys Acta. 2013;1830(2):2435–48.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seong-Ho Koh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media Singapore

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Koh, SH. (2020). Mechanism of Recovery After Stroke. In: Lee, SH. (eds) Stroke Revisited: Pathophysiology of Stroke. Stroke Revisited. Springer, Singapore. https://doi.org/10.1007/978-981-10-1430-7_19

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-1430-7_19

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-1429-1

  • Online ISBN: 978-981-10-1430-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics