Skip to main content

Transmission and Movement of Plant Viruses

  • Chapter
  • First Online:

Abstract

Plant viruses are obligate parasites and their survival depend on being able to spread from one susceptible organism to another. Viruses cannot penetrate the intact plant cuticle and the cellulose cell wall. Therefore penetration is made trough wounds in the surface layers, such as in mechanical inoculation and transmission by vectors. There is specificity in the mechanism by which the plant viruses are naturally transmitted. They are important economically only if they can spread from plant to plant rapidly. They are contagious agents that differ in their transmissibility. No transmission of virus occurred when the virus titer in the inoculum was too low and there is no susceptibility between virus, vector, and host. Also the presence of some substances in the inoculum, which inhibited the infection process, hampered the transmission of viruses. Knowledge of the ways in which plant viruses spread is essential for the development of control measures.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adams MJ (1991) Transmission of plant viruses by fungi. Ann Appl Biol 118:479–492

    Article  Google Scholar 

  • Atabekov J, Taliansky M, Malyshenko S, Mushegian A, Kondakova O (1990) The cell to cell movement of viruses in plants. In: Pirone TP, Shaw JG (eds) Viral genes and plant pathogenesis. Springer, New York, pp 53–55

    Google Scholar 

  • Bennett CW (1940) The relation of viruses to plant tissues. Bot Rev 6:427–473

    Article  CAS  Google Scholar 

  • Broadbent L (1965) The epidemiology of tomato mosaic. XI. Seed transmission of TMV. Ann Appl Biol 56:177–205

    Article  CAS  Google Scholar 

  • Brown DJF, Robertson WM, Trudgill DL (1995) Transmission of viruses by plant nematodes. Annu Rev Phytopathol 33:223–249

    Article  CAS  PubMed  Google Scholar 

  • Campbell RN (1996) Fungal transmission of plant viruses. Annu Rev Phytopathol 34:87–108

    Article  CAS  PubMed  Google Scholar 

  • Campbell RN, Fry PR (1966) The nature of the associations between Olpidium brassicae and lettuce big-vein and tobacco necrosis viruses. Virology 29:222–233

    Article  CAS  PubMed  Google Scholar 

  • Campbell RN, Sim ST (1994) Host specificity and nomenclature of Olpidium bornovanus (= Olpidium radicale) and comparisons to Olpidium brassicae. Can J Bot 72:1136–1143

    Article  Google Scholar 

  • Canto T, Palukaitis P (1999) Are tubules generated by the 3a protein for cucumber mosaic virus movement? Mol Plant-Microbe Interact 12:985–993

    Article  CAS  Google Scholar 

  • Canto T, Prior DAM, Hellwald KH, Oparka KJ, Palukaitis P (1997) Characterization of cucumber mosaic virus. IV. Movement protein and coat protein are both essential for cell-to-cell movement of cucumber mosaic virus. Virology 237:237–248

    Article  CAS  PubMed  Google Scholar 

  • Carrington JC, Kasschau KD, Mahajan SK, Schaad MC (1996) Cell-to-cell and long-distance transport of viruses in plants. Plant Cell 8:1669–1681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carroll TW (1981) Seedborne viruses virus-host interactions. In: Maramorosch K, Harris KF (eds) Plant disease and vectors: ecology and epidemiology. Academic, New York, pp 293–317

    Chapter  Google Scholar 

  • Carroll TW, Mayhew DE (1976a) Anther and pollen infection in relation to the pollen and seed transmissibility of two strains of barley stripe mosaic virus in barley. Can J Bot 54:1604–1621

    Article  Google Scholar 

  • Carroll TW, Mayhew DE (1976b) Occurrence of virions in developing ovules and embryo sacs in relation to the seed transmissibility of barley stripe mosaic virus. Can J Botany 54:2497–2512

    Article  Google Scholar 

  • Cheo PC (1970) Subliminal infection of cotton by tobacco mosaic virus. Phytopathology 60:41–46

    Article  Google Scholar 

  • Cooper B, Schmitz I, Rao ALN, Beachy RN, Dodds JA (1996) Cell-to-cell transport of movement-defective cucumber mosaic and tobacco mosaic viruses in transgenic plants expressing heterologous movement protein genes. Virology 216:208–213

    Article  CAS  PubMed  Google Scholar 

  • Cronin S, Verchot J, Haldeman-Cahill R, Schaad MC, Carrington JC (1995) Long-distance movement factor: a transport function of the potyvirus helper component proteinase. Plant Cell 7:549–559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crowley NC (1959) Studies on the time of embryo infection by seed-transmitted viruses. Virology 8:116–123

    Article  CAS  PubMed  Google Scholar 

  • Dawson WO, Lehto KM (1990) Regulation of tobamovirus gene expression. Adv Virus Res 38:307–342

    Article  CAS  PubMed  Google Scholar 

  • Deom CM, Lapidot M, Beachy RN (1992) Plant virus movement proteins. Cell 69:221–224

    Article  CAS  PubMed  Google Scholar 

  • Dijkstra J, De Jager CP (1998) Practical plant virology: protocols and exercises. Springer, Berlin/Heidelberg/New York, 459 pp

    Book  Google Scholar 

  • Dorokhov YL, Alexandrova NM, Miroschnichenko NA, Atabekov JG (1983) Isolation and analysis of virus-specific ribonucleoprotein of tobacco mosaic virus-infected tobacco. Virology 127:237–252

    Article  CAS  PubMed  Google Scholar 

  • Falk BW, Tsai JH, Lommel SA (1987) Differences in levels of detection for the maize stripe virus capsid and major non-capsid proteins in plant and insect hosts. J Gen Virol 68:1801–1811

    Article  CAS  Google Scholar 

  • Ferris RS, Berger PH (1993) A stochastic simulation model of epidemics of arthropod vectored plant viruses. Phytopathology 83:1269–1278

    Article  Google Scholar 

  • Francki RIB, Fauquet CM, Knudson DL, Brown F (eds) (1991) Classification and nomenclature of viruses. Fifth report of the international committee on taxonomy of viruses. Archives of Virology (Suppl. 2), Springer, Wien/New York, 450 pp

    Google Scholar 

  • Gal-On A, Kaplan I, Palukaitis P (1995) Differential effects of satellite RNA on the accumulation of cucumber mosaic virus RNAs and their encoded proteins in tobacco versus zucchini squash with two strains of CMV helper virus. Virology 208:58–66

    Article  CAS  PubMed  Google Scholar 

  • Giesman-Cookmeyer D, Silver S, Vaewhongs AA, Lommel SA, Deom CM (1995) Tobamovirus and dianthovirus movement proteins are functionally homologous. Virology 13:38–45

    Article  Google Scholar 

  • Gray SM (1996) Plant virus proteins involved in natural vector transmission. Trends Microbiol 4:259–264

    Article  CAS  PubMed  Google Scholar 

  • Hanada K, Harrison BD (1977) Effects of virus genotype and temperature on seed transmission of nepoviruses. Ann Appl Biol 85:79–92

    Article  Google Scholar 

  • Harris KF (1981) Arthropod and nematode vectors of plant viruses. Annu Rev Phytopathol 19:391–426

    Article  Google Scholar 

  • Harris KF (1991) Aphid transmission of plant viruses. In: Mandahar CL (ed) Plant viruses, vol 2. CRC Press, Boca Raton, pp 177–204

    Google Scholar 

  • Hibi T and Furuki I (1985) Melon necrotic spot virus. In: AAB description of plant viruses, No. 302, AAB, Wellesbourne, Warwick, UK, 4 pp

    Google Scholar 

  • Hull R (1994) Resistance to plant viruses: Obtaining genes by non-conventional approaches. Euphytica 75:195–205

    Article  Google Scholar 

  • Hunter DG, Bowyer JW (1997) Cytopathology of developing anthers and pollen mother cells from lettuce plants infected by lettuce mosaic potyvirus. J Phytopathol 1(145):521–524

    Article  Google Scholar 

  • Johansen IE, Dougherty WG, Keller KE, Wang D, Hampton RO (1996) Multiple viral determinants affect seed transmission of pea seedborne mosaic virus in Pisum sativum. J Gen Virol 77:3194–3154

    Google Scholar 

  • Kaplan JM, Shintaku MH, Li Q, Zhang L, Marsh LE, Palukaitis P (1995) Complementation of movement defective mutants in transgenic tobacco expressing cucumber mosaic virus movement gene. Virology 209:188–199

    Article  CAS  PubMed  Google Scholar 

  • Kaplan JM, Zhang L, Palukaitis P (1998) Characterization of cucumber mosaic virus. V. Cell-to-cell movement requires capsid protein but not virions. Virology 246:221–231

    Article  CAS  PubMed  Google Scholar 

  • Kasteel DTG (1999) Structure, morphogenesis and function of tubular structures induced by cowpea mosaic virus. PhD thesis, Wageningen Agricultural University, Wageningen, The Netherlands, 71 pp

    Google Scholar 

  • Kasteel DTJ, Perbal C-M, Boyer J-C, Wellink J, Goldbach RW, Maule AJ, Van Lent JWM (1996) The movement proteins of cowpea mosaic virus and cauliflower mosaic virus induce tubular structures in plant and insect cells. J Gen Virol 77:2857–2864

    Article  CAS  PubMed  Google Scholar 

  • Lister R, Murant AF (1967) Seed transmission of nematode borne viruses. Ann Appl Biol 59:49–62

    Article  Google Scholar 

  • Lopez-Abella D, Bradley RHE, Harris KF (1988) Correlation between stylet paths made during superficial probing and the ability of aphids to transmit nonpersistent viruses. In: Harris KF (ed) Advances in disease vector research (Volume 5). Springer, New York, pp 251–287

    Google Scholar 

  • Lucas WJ, Gilbertson RL (1994) Plasmodesmata in relation to viral movement within leaf tissues. Annu Rev Phytopathol 32:387–411

    Article  CAS  Google Scholar 

  • Martin B, Collar JL, Tjallingii WF, Fereres A (1997) Intracellular ingestion and salivation by aphids may cause the acquisition and inoculation of nonpersistently transmitted plant viruses. J Gen Virol 78:2701–2705

    Article  CAS  PubMed  Google Scholar 

  • Matthews REF (1991) Plant virology, 3rd edn. Academic, San Diego

    Google Scholar 

  • Mayo MA (1995) Unassigned viruses. In: Murphy FA, Fauquet CM, Bishop DHL, Ghabrial SA, Jarvis AW, Martelli GP, Mayo MA, Summers MD (eds) Virus taxonomy. Springer, Wien/New York, pp 504–507

    Google Scholar 

  • McDonald JG, Hamilton RJ (1972) Distribution of southern bean mosaic virus in the seed of Phaseolus vulgaris. Phytopathology 62:387–389

    Article  Google Scholar 

  • Melcher U (1990) Similarities between putative transport proteins of plant viruses. J Gen Virol 71:1009–1018

    Google Scholar 

  • Melcher U (2000) The “30” superfamily of viral movement proteins. J Gen Virol 81:257–266

    Article  CAS  PubMed  Google Scholar 

  • Meshi T, Watanabe Y, Saito T, Sugimoto A, Maeda T, Okada Y (1987) Function of the 30kd protein of tobacco mosaic virus: Involvement in cell-to-cell movement and dispensability for replication. EMBO J 6:2557–5047

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nault LR, Ammar ED (1989) Leafhopper and planthopper transmission of plant viruses. Annu Rev Entomol 34:503–529

    Article  Google Scholar 

  • Nelson RS, Li G, Hodgson RAJ, Beachy RN, Shintaku M (1993) Impeded phloemdependent accumulation of the masked strain of tobacco mosaic virus. Mol Plant-Microbe Interact 6:45–54

    Article  Google Scholar 

  • Nishiguchi M, Motoyoshi F, Oshima N (1978) Behaviour of a temperature sensitive strains of tobacco mosaic virus in tomato leaves and protoplasts. J Gen Virol 39:53–61

    Article  Google Scholar 

  • Pirone TP (1977) Accessory factors in nonpersistent virus transmission. In: Harris KF, Maramorosch K (eds) Aphids as virus vectors. Academic, London, pp 221–235

    Chapter  Google Scholar 

  • Pirone TP, Blanc S (1996) Helper-dependent vector transmission of plant viruses. Annu Rev Phytopathol 34:227–247

    Article  CAS  PubMed  Google Scholar 

  • Plumb RT (1989) Detecting plant viruses in their vectors. In: Harris KF (ed) Advances in disease vector research, vol 6. Springer, Berlin, pp 191–209

    Chapter  Google Scholar 

  • Pringle CR (1999) Virus taxonomy—1999. The universal system of virus taxonomy, updated to include the new proposals ratified by the International Committee on Taxonomy of Viruses during 1998. Arch Virol 144:421–429

    Article  CAS  PubMed  Google Scholar 

  • Rao ALN, Grantham GL (1995) Biological significance of the seven aminoterminal basic residues of brome mosaic virus coat protein. Virology 211:42–52

    Article  CAS  PubMed  Google Scholar 

  • Rao ALN, Cooper B, Deom CM (1998) Defective movement of viruses in the family Bromoviridae is differently complemented in Nicotiana benthamiana expressing tobamovirus movement proteins. Virology 88:666–672

    CAS  Google Scholar 

  • Rawlins TE, Tompkins CM (1936) Studies on the effect of carborundum as an abrasive in plant virus inoculations. Phytopathology 26:578–587

    Google Scholar 

  • Reddick D, Stewart V (1919) Transmission of the virus of bean mosaic in seed and observations on thermal death-point of seed and virus. Phytopathology 9:445–450

    Google Scholar 

  • Saito T, Yamanaka K, Okada Y (1990) Long-distance movement and viral assembly of tobacco mosaic virus mutants. Virology 176:329–336

    Article  CAS  PubMed  Google Scholar 

  • Schmitz I, Rao ALN (1996) Molecular studies on bromovirus capsid protein. I. Characterization of cell-to-cell movement-defective RNA3 variants of brome mosaic virus. Virology 226:281–293

    Article  CAS  PubMed  Google Scholar 

  • Schmitz I, Rao ALN (1998) Deletions in the conserved amino-terminal basic arm of cucumber mosaic virus coat protein disrupt virion assembly but do not abolish infectivity and cell-to-cell movement. Virology 248:323–331

    Article  CAS  PubMed  Google Scholar 

  • Scholthof HB, Scholthof K-BG, Kikkert M, Jackson AO (1995) Tomato bushy stunt virus spread is regulated by two nested genes that function in cell-to-cell movement and host-dependent systemic invasion. Virology 213:425–438

    Article  CAS  PubMed  Google Scholar 

  • Smith PR, Campbell RN, Fry PR (1969) Root discharge and survival of diseases. Phytopathology 59:1678–1687

    Google Scholar 

  • Solovyev AG, Zelenina DA, Savenkov EI, Grdzelishvili VZ, Morozov S, Maiss E, Casper R, Atabekov JG (1997) Host-controlled cell-to-cell movement of a hybrid barley stripe mosaic virus expressing a dianthovirus movement protein. Intervirology 40:1–6

    CAS  PubMed  Google Scholar 

  • Taliansky ME, Garcia-Arenal F (1995) Role of cucumovirus capsid protein in long distance movement within the infected plant. J Virol 69:916–922

    CAS  PubMed  PubMed Central  Google Scholar 

  • Taliansky ME, Atabekova TI, Kaplan IB, Morozov SY, Malyshenko SI, Atakov JG (1982a) A study of TMV TS mutant NI2519. I. Complementation experiments. Virology 76:701–708

    Article  Google Scholar 

  • Taliansky ME, Malyshenko SI, Pshennikova ES, Kaplan IB, Ulanova EF, Atakov JG (1982b) Plant virus-specific transport function. II. A factor controlling virus host range. Virology 122:327–331

    Article  CAS  PubMed  Google Scholar 

  • Taylor CE (1967) The multiplication of Longidorus elongatus (de Man) on different host plants with reference to virus transmission. Ann Appl Biol 59:275–281

    Article  Google Scholar 

  • Taylor CE (1972) Transmission of viruses by nematodes. In: Kado EI, Agrawal HO (eds) Principles and techniques in plant virology. Van Nostrand Reinhold, New York, pp 226–247

    Google Scholar 

  • Taylor RH, Grogan RG, Kimble KA (1961) Transmission of tobacco mosaic virus in tomato seed. Phytopathology 51:837–842

    Google Scholar 

  • Temmink JHM (1971) An ultrastructural study of Olpidium brassicae and its transmission of tobacco necrosis virus. Mededelingen Landbouwhogeschool Wageningen 71:1–135

    Google Scholar 

  • Temmink JHM, Campbell RN (1969a) The ultrastructure of Olpidium brassicae. II. Zoospores. Can J Botany 47:227–231

    Article  Google Scholar 

  • Temmink JHM, Campbell RN (1969b) The ultrastructure of Olpidium brassicae. III. Infection of host roots. Can J Botany 47:421–424

    Article  Google Scholar 

  • Timian RG (1974) The range of symbiosis of barley and barley stripe mosaic virus. Phytopathology 64:342–345

    Article  Google Scholar 

  • Tomlinson J, Faithful E, Flewett T, Beards G (1982) Isolation of infective tomato bushy stunt virus after passage through the human alimentary tract. Nature 300:637–638

    Article  CAS  PubMed  Google Scholar 

  • Tomlinson J, Faithful E, Webb M, Frazier R, Seeley N (1984) Chenopodium necrosis: a distinctive strain of tobacco necrosis virus isolated from river water. Ann Appl Biol 102:135–147

    Article  Google Scholar 

  • Traynor P, Young BM, Ahlquist P (1991) Deletion analysis of brome mosaic virus 2a protein: Effects on RNA replication and systemic spread. J Virol 65:2807–2815

    CAS  PubMed  PubMed Central  Google Scholar 

  • Uyemoto JK, Grogan RG (1977) Southern bean mosaic virus: Evidence for seed transmission in bean embryos. Phytopathology 67:1190–1196

    Article  CAS  Google Scholar 

  • Van den Heuvel JFJM, Franz AWE, Van der Wilk F (1999) Molecular basis of virus transmission. In: Mandahar CL (ed) Molecular biology of plant viruses. Kluwer Academic Publishers, Boston/Dordrecht/London, pp 183–200

    Chapter  Google Scholar 

  • Van Lent J, Wellink J, Goldbach RW (1990) Evidence of the involvement of the 58K and 48K proteins in the intercellular movement of cowpea mosaic virus. J Gen Virol 71:219–223

    Article  Google Scholar 

  • Van Lent J, Storms MMH, Van der Meer F, Wellink J, Goldbach RW (1991) Tubular structures involved in movement of cowpea mosaic virus are also formed in infected cowpea protoplasts. J Gen Virol 72:2615–2623

    Article  PubMed  Google Scholar 

  • Walker HL, Pirone TP (1972) Particle numbers associated with mechanical and aphid transmission of some viruses. Phytopathology 82:1283–1288

    Article  Google Scholar 

  • Wang D, Maule AJ (1997) Contrasting patterns in the spread of two seed-borne viruses in pea embryos. Plant J 11:1333–1340

    Article  Google Scholar 

  • Wang RY, Gergerich RC, Kim KS (1992) Noncirculative transmission of plant viruses by leaf feeding beetles. Phytopathology 82:946–950

    Article  Google Scholar 

  • Wang D, Woods RD, Cockbain AJ, Maule AJ, Biddle AJ (1993) The susceptibility of pea cultivars to pea seed-borne mosaic virus infection and virus transmission in the UK. Plant Pathol 42:42–47

    Article  Google Scholar 

  • Watson HA, Roberts FH (1939) A comparative study of the transmission of Hyoscyamus virus 3, potato virus Y, and cucumber virus 1 by the vectors Myzus persicae (Sulz.), M. circumflexus (Buckton) and Macrosiphum gel (Koch). Proc R Soc Lond Ser B 127:543–576

    Article  Google Scholar 

  • Weiland JJ, Edwards MC (1994) A single nucleotide substitution in the alpha-a gene confers oat pathogenicity to barley stripe mosaic virus strain ND18. Mol Plant-Microbe Interact 9:62–67

    Article  Google Scholar 

  • Wellink J, van Kammen A (1989) Cell-to-cell transport of cowpea mosaic virus requires both the 54/48K proteins and the capsid proteins. J Gen Virol 51:317–325

    Google Scholar 

  • Wieczorek A, Sanfacon H (1993) Characterization and subcellular location of tomato ringspot nepovirus putative movement protein. Virology 194:734–743

    Article  CAS  PubMed  Google Scholar 

  • Williamson VM, Gleason C (2003) Plant–nematode interactions. Curr Opin Plant Biol 6:327–333

    Article  CAS  PubMed  Google Scholar 

  • Wolf S, Deom CM, Beachy RN, Lucas WJ (1989) Movement protein of tobacco mosaic virus modifies plasmodesmatal size exclusion limit. Science 246:377–379

    Article  CAS  PubMed  Google Scholar 

  • Xu Z, Chen K, Zhang Z, Chen J (1991) Seed transmission of peanut stripe virus in peanut. Plant Dis 75:723–726

    Article  Google Scholar 

  • Zeyen RJ, Berger PH (1990) Is the concept of short retention times for aphid-borne nonpersistent plant viruses sound? Phytopathology 80:769–771

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolay Manchev Petrov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Petrov, N.M. (2016). Transmission and Movement of Plant Viruses. In: Gaur, R., Petrov, N., Patil, B., Stoyanova, M. (eds) Plant Viruses: Evolution and Management. Springer, Singapore. https://doi.org/10.1007/978-981-10-1406-2_2

Download citation

Publish with us

Policies and ethics