Skip to main content

Part of the book series: Modern Otology and Neurotology ((MODOTOL))

Abstract

Studies on genetics of inner ear malformation and cochlear nerve deficiency have been successful in several diseases. Here, we described the current knowledge about the genetics of representative diseases. Among nonsyndromic hearing losses, we reviewed DFNB4 which is caused by mutations in the SLC26A4 and DFN3 which is caused by mutations in POU3F4. Among syndromic hearing losses, we reviewed Waardenburg syndrome, branchio-oto-renal (BOR) syndrome, CHARGE syndrome, Okihiro syndrome, and distal renal tubular acidosis. For chromosomal disorders, trisomy 21 (Down syndrome), trisomy 18, trisomy 13, and 22q11.2 deletion syndrome (DiGeorge syndrome) were reviewed. Although causative genes are identified for only a part of inner ear malformation and cochlear nerve deficiency at present, the situation is likely to change rapidly because of the development of next-generation sequencing technologies. With accumulation of genotype-phenotype information for these auditory disorders, explanation for the causes and mechanisms of hearing loss will become more widely available, planning of medical care will be more effective, and genetic counseling will get more precise.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Merchant SN. Anomalies of the inner ear. In: Merchant SN, Nadol JB, editors. Schuknecht’s pathology of the ear. 3rd ed. Shelton: People’s Medical Publishing House-USA; 2010. p. 262–77.

    Google Scholar 

  2. Chan KH, Eelkema EA, Furman JM, Kamerer DB. Familial sensorineural hearing loss: a correlative study of audiologic, radiographic, and vestibular findings. Ann Otol Rhinol Laryngol. 1991;100(8):620–5.

    Article  CAS  PubMed  Google Scholar 

  3. Griffith AJ, Telian SA, Downs C, Gorski JL, Gebarski SS, Lalwani AK, et al. Familial Mondini dysplasia. Laryngoscope. 1998;108(9):1368–73.

    Article  CAS  PubMed  Google Scholar 

  4. Bamiou DE, Worth S, Phelps P, Sirimanna T, Rajput K. Eighth nerve aplasia and hypoplasia in cochlear implant candidates: the clinical perspective. Otol Neurotol. 2001;22(4):492–6.

    Article  CAS  PubMed  Google Scholar 

  5. Jackler RK, Luxford WM, House WF. Congenital malformations of the inner ear: a classification based on embryogenesis. Laryngoscope. 1987;97(3 Pt 2 Suppl 40):2–14.

    CAS  PubMed  Google Scholar 

  6. Sennaroglu L, Saatci I. A new classification for cochleovestibular malformations. Laryngoscope. 2002;112(12):2230–41. doi:10.1097/00005537-200212000-00019.

    Article  PubMed  Google Scholar 

  7. Sennaroglu L, Sarac S, Ergin T. Surgical results of cochlear implantation in malformed cochlea. Otol Neurotol. 2006;27(5):615–23. doi:10.1097/01.mao.0000224090.94882.b4.

    Article  PubMed  Google Scholar 

  8. Pryor SP, Madeo AC, Reynolds JC, Sarlis NJ, Arnos KS, Nance WE, et al. SLC26A4/PDS genotype-phenotype correlation in hearing loss with enlargement of the vestibular aqueduct (EVA): evidence that Pendred syndrome and non-syndromic EVA are distinct clinical and genetic entities. J Med Genet. 2005;42(2):159–65. doi:10.1136/jmg.2004.024208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Scott DA, Wang R, Kreman TM, Sheffield VC, Karniski LP. The Pendred syndrome gene encodes a chloride-iodide transport protein. Nat Genet. 1999;21(4):440–3. doi:10.1038/7783.

    Article  CAS  PubMed  Google Scholar 

  10. Everett LA, Glaser B, Beck JC, Idol JR, Buchs A, Heyman M, et al. Pendred syndrome is caused by mutations in a putative sulphate transporter gene (PDS). Nat Genet. 1997;17(4):411–22. doi:10.1038/ng1297-411.

    Article  CAS  PubMed  Google Scholar 

  11. Royaux IE, Belyantseva IA, Wu T, Kachar B, Everett LA, Marcus DC, et al. Localization and functional studies of pendrin in the mouse inner ear provide insight about the etiology of deafness in pendred syndrome. J Assoc Res Otolaryngol. 2003;4(3):394–404.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Phelps PD, Coffey RA, Trembath RC, Luxon LM, Grossman AB, Britton KE, et al. Radiological malformations of the ear in Pendred syndrome. Clin Radiol. 1998;53(4):268–73.

    Article  CAS  PubMed  Google Scholar 

  13. Cremers CW, Admiraal RJ, Huygen PL, Bolder C, Everett LA, Joosten FB, et al. Progressive hearing loss, hypoplasia of the cochlea and widened vestibular aqueducts are very common features in Pendred’s syndrome. Int J Pediatr Otorhinolaryngol. 1998;45(2):113–23.

    Article  CAS  PubMed  Google Scholar 

  14. Johnsen T, Jorgensen MB, Johnsen S. Mondini cochlea in Pendred’s syndrome. A histological study. Acta Otolaryngol. 1986;102(3–4):239–47.

    Article  CAS  PubMed  Google Scholar 

  15. Cremers CW, Snik AF, Huygen PL, Joosten FB, Cremers FP. X-linked mixed deafness syndrome with congenital fixation of the stapedial footplate and perilymphatic gusher (DFN3). Adv Otorhinolaryngol. 2002;61:161–7.

    CAS  PubMed  Google Scholar 

  16. de Kok YJ, van der Maarel SM, Bitner-Glindzicz M, Huber I, Monaco AP, Malcolm S, et al. Association between X-linked mixed deafness and mutations in the POU domain gene POU3F4. Science. 1995;267(5198):685–8.

    Article  PubMed  Google Scholar 

  17. Mathis JM, Simmons DM, He X, Swanson LW, Rosenfeld MG. Brain 4: a novel mammalian POU domain transcription factor exhibiting restricted brain-specific expression. EMBO J. 1992;11(7):2551–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Phippard D, Lu L, Lee D, Saunders JC, Crenshaw 3rd EB. Targeted mutagenesis of the POU-domain gene Brn4/Pou3f4 causes developmental defects in the inner ear. J Neurosci. 1999;19(14):5980–9.

    CAS  PubMed  Google Scholar 

  19. Minowa O, Ikeda K, Sugitani Y, Oshima T, Nakai S, Katori Y, et al. Altered cochlear fibrocytes in a mouse model of DFN3 nonsyndromic deafness. Science. 1999;285(5432):1408–11.

    Article  CAS  PubMed  Google Scholar 

  20. Phelps PD, Reardon W, Pembrey M, Bellman S, Luxom L. X-linked deafness, stapes gushers and a distinctive defect of the inner ear. Neuroradiology. 1991;33(4):326–30.

    Article  CAS  PubMed  Google Scholar 

  21. Talbot JM, Wilson DF. Computed tomographic diagnosis of X-linked congenital mixed deafness, fixation of the stapedial footplate, and perilymphatic gusher. Am J Otol. 1994;15(2):177–82.

    CAS  PubMed  Google Scholar 

  22. Waardenburg PJ. A new syndrome combining developmental anomalies of the eyelids, eyebrows and nose root with pigmentary defects of the iris and head hair and with congenital deafness. Am J Hum Genet. 1951;3(3):195–253.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Farrer LA, Grundfast KM, Amos J, Arnos KS, Asher Jr JH, Beighton P, et al. Waardenburg syndrome (WS) type I is caused by defects at multiple loci, one of which is near ALPP on chromosome 2: first report of the WS consortium. Am J Hum Genet. 1992;50(5):902–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Hughes AE, Newton VE, Liu XZ, Read AP. A gene for Waardenburg syndrome type 2 maps close to the human homologue of the microphthalmia gene at chromosome 3p12-p14.1. Nat Genet. 1994;7(4):509–12. doi:10.1038/ng0894-509.

    Article  CAS  PubMed  Google Scholar 

  25. Attie T, Till M, Pelet A, Amiel J, Edery P, Boutrand L, et al. Mutation of the endothelin-receptor B gene in Waardenburg-Hirschsprung disease. Hum Mol Genet. 1995;4(12):2407–9.

    Article  CAS  PubMed  Google Scholar 

  26. Edery P, Attie T, Amiel J, Pelet A, Eng C, Hofstra RM, et al. Mutation of the endothelin-3 gene in the Waardenburg-Hirschsprung disease (Shah-Waardenburg syndrome). Nat Genet. 1996;12(4):442–4. doi:10.1038/ng0496-442.

    Article  CAS  PubMed  Google Scholar 

  27. Pingault V, Bondurand N, Kuhlbrodt K, Goerich DE, Prehu MO, Puliti A, et al. SOX10 mutations in patients with Waardenburg-Hirschsprung disease. Nat Genet. 1998;18(2):171–3. doi:10.1038/ng0298-171.

    Article  CAS  PubMed  Google Scholar 

  28. Pingault V, Ente D, Dastot-Le Moal F, Goossens M, Marlin S, Bondurand N. Review and update of mutations causing Waardenburg syndrome. Hum Mutat. 2010;31(4):391–406. doi:10.1002/humu.21211.

    Article  CAS  PubMed  Google Scholar 

  29. Liu XZ, Newton VE, Read AP. Waardenburg syndrome type II: phenotypic findings and diagnostic criteria. Am J Med Genet. 1995;55(1):95–100. doi:10.1002/ajmg.1320550123.

    Article  CAS  PubMed  Google Scholar 

  30. Newton V. Hearing loss and Waardenburg’s syndrome: implications for genetic counselling. J Laryngol Otol. 1990;104(2):97–103.

    Article  CAS  PubMed  Google Scholar 

  31. Oysu C, Oysu A, Aslan I, Tinaz M. Temporal bone imaging findings in Waardenburg’s syndrome. Int J Pediatr Otorhinolaryngol. 2001;58(3):215–21.

    Article  CAS  PubMed  Google Scholar 

  32. Hildesheimer M, Maayan Z, Muchnik C, Rubinstein M, Goodman RM. Auditory and vestibular findings in Waardenburg’s type II syndrome. J Laryngol Otol. 1989;103(12):1130–3.

    Article  CAS  PubMed  Google Scholar 

  33. Kemperman MH, Stinckens C, Kumar S, Huygen PL, Joosten FB, Cremers CW. Progressive fluctuant hearing loss, enlarged vestibular aqueduct, and cochlear hypoplasia in branchio-oto-renal syndrome. Otol Neurotol. 2001;22(5):637–43.

    Article  CAS  PubMed  Google Scholar 

  34. Merchant SN. Genetically determined and other developmental defects. In: Merchant SN, Nadol JB, editors. Schuknecht’s pathology of the ear. 3rd ed. Shelton: People’s Medical Publishing House-USA; 2010. p. 152–8, 191–215.

    Google Scholar 

  35. Abdelhak S, Kalatzis V, Heilig R, Compain S, Samson D, Vincent C, et al. A human homologue of the Drosophila eyes absent gene underlies branchio-oto-renal (BOR) syndrome and identifies a novel gene family. Nat Genet. 1997;15(2):157–64. doi:10.1038/ng0297-157.

    Article  CAS  PubMed  Google Scholar 

  36. Ruf RG, Xu PX, Silvius D, Otto EA, Beekmann F, Muerb UT, et al. SIX1 mutations cause branchio-oto-renal syndrome by disruption of EYA1-SIX1-DNA complexes. Proc Natl Acad Sci U S A. 2004;101(21):8090–5. doi:10.1073/pnas.0308475101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kalatzis V, Sahly I, El-Amraoui A, Petit C. Eya1 expression in the developing ear and kidney: towards the understanding of the pathogenesis of Branchio-Oto-Renal (BOR) syndrome. Dev Dyn. 1998;213(4):486–99. doi:10.1002/(SICI)1097-0177(199812)213:4<486::AID-AJA13>3.0.CO;2-L.

    Article  CAS  PubMed  Google Scholar 

  38. Xu PX, Zheng W, Huang L, Maire P, Laclef C, Silvius D. Six1 is required for the early organogenesis of mammalian kidney. Development. 2003;130(14):3085–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zheng W, Huang L, Wei ZB, Silvius D, Tang B, Xu PX. The role of Six1 in mammalian auditory system development. Development. 2003;130(17):3989–4000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ceruti S, Stinckens C, Cremers CW, Casselman JW. Temporal bone anomalies in the branchio-oto-renal syndrome: detailed computed tomographic and magnetic resonance imaging findings. Otol Neurotol. 2002;23(2):200–7.

    Article  CAS  PubMed  Google Scholar 

  41. Thelin JW, Mitchell JA, Hefner MA, Davenport SL. CHARGE syndrome. Part II. Hearing loss. Int J Pediatr Otorhinolaryngol. 1986;12(2):145–63.

    Article  CAS  PubMed  Google Scholar 

  42. Goldson E, Smith AC, Stewart JM. The CHARGE association. How well can they do? Am J Dis Child. 1986;140(9):918–21.

    Article  CAS  PubMed  Google Scholar 

  43. Guyot JP, Gacek RR, DiRaddo P. The temporal bone anomaly in CHARGE association. Arch Otolaryngol Head Neck Surg. 1987;113(3):321–4.

    Article  CAS  PubMed  Google Scholar 

  44. Bartels CF, Scacheri C, White L, Scacheri PC, Bale S. Mutations in the CHD7 gene: the experience of a commercial laboratory. Genet Test Mol Biomarkers. 2010;14(6):881–91. doi:10.1089/gtmb.2010.0101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bergman JE, Janssen N, Hoefsloot LH, Jongmans MC, Hofstra RM, van Ravenswaaij-Arts CM. CHD7 mutations and CHARGE syndrome: the clinical implications of an expanding phenotype. J Med Genet. 2011;48(5):334–42. doi:10.1136/jmg.2010.087106.

    Article  CAS  PubMed  Google Scholar 

  46. Schnetz MP, Handoko L, Akhtar-Zaidi B, Bartels CF, Pereira CF, Fisher AG, et al. CHD7 targets active gene enhancer elements to modulate ES cell-specific gene expression. PLoS Genet. 2010;6(7):e1001023. doi:10.1371/journal.pgen.1001023.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Siebert JR, Graham Jr JM, MacDonald C. Pathologic features of the CHARGE association: support for involvement of the neural crest. Teratology. 1985;31(3):331–6. doi:10.1002/tera.1420310303.

    Article  CAS  PubMed  Google Scholar 

  48. Lalani SR, Safiullah AM, Molinari LM, Fernbach SD, Martin DM, Belmont JW. SEMA3E mutation in a patient with CHARGE syndrome. J Med Genet. 2004;41(7):e94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Okihiro MM, Tasaki T, Nakano KK, Bennett BK. Duane syndrome and congenital upper-limb anomalies. A familial occurrence. Arch Neurol. 1977;34(3):174–9.

    Article  CAS  PubMed  Google Scholar 

  50. Kohlhase J, Schubert L, Liebers M, Rauch A, Becker K, Mohammed SN, et al. Mutations at the SALL4 locus on chromosome 20 result in a range of clinically overlapping phenotypes, including Okihiro syndrome, Holt-Oram syndrome, acro-renal-ocular syndrome, and patients previously reported to represent thalidomide embryopathy. J Med Genet. 2003;40(7):473–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Bourke E, Delaney VB, Mosawi M, Reavey P, Weston M. Renal tubular acidosis and osteopetrosis in siblings. Nephron. 1981;28(6):268–72.

    Article  CAS  PubMed  Google Scholar 

  52. Brown MT, Cunningham MJ, Ingelfinger JR, Becker AN. Progressive sensorineural hearing loss in association with distal renal tubular acidosis. Arch Otolaryngol Head Neck Surg. 1993;119(4):458–60.

    Article  CAS  PubMed  Google Scholar 

  53. Karet FE, Finberg KE, Nelson RD, Nayir A, Mocan H, Sanjad SA, et al. Mutations in the gene encoding B1 subunit of H+-ATPase cause renal tubular acidosis with sensorineural deafness. Nat Genet. 1999;21(1):84–90. doi:10.1038/5022.

    Article  CAS  PubMed  Google Scholar 

  54. Karet FE, Finberg KE, Nayir A, Bakkaloglu A, Ozen S, Hulton SA, et al. Localization of a gene for autosomal recessive distal renal tubular acidosis with normal hearing (rdRTA2) to 7q33-34. Am J Hum Genet. 1999;65(6):1656–65. doi:10.1086/302679.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Andreucci E, Bianchi B, Carboni I, Lavoratti G, Mortilla M, Fonda C, et al. Inner ear abnormalities in four patients with dRTA and SNHL: clinical and genetic heterogeneity. Pediatr Nephrol. 2009;24(11):2147–53. doi:10.1007/s00467-009-1261-3.

    Article  PubMed  Google Scholar 

  56. Stover EH, Borthwick KJ, Bavalia C, Eady N, Fritz DM, Rungroj N, et al. Novel ATP6V1B1 and ATP6V0A4 mutations in autosomal recessive distal renal tubular acidosis with new evidence for hearing loss. J Med Genet. 2002;39(11):796–803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Morton CC, Giersch ABS. Genetic hearing loss associated with chromosome disorders. In: Toriello HV, Smith SD, editors. Hereditary hearing loss and its syndromes. 3rd ed. New York: Oxford University Press; 2013. p. 701–14.

    Google Scholar 

  58. Blaser S, Propst EJ, Martin D, Feigenbaum A, James AL, Shannon P, et al. Inner ear dysplasia is common in children with Down syndrome (trisomy 21). Laryngoscope. 2006;116(12):2113–9. doi:10.1097/01.mlg.0000245034.77640.4f.

    Article  PubMed  Google Scholar 

  59. Dahle AJ, McCollister FP. Hearing and otologic disorders in children with Down syndrome. Am J Ment Defic. 1986;90(6):636–42.

    CAS  PubMed  Google Scholar 

  60. Schubert R, Eggermann T, Hofstaetter C, von Netzer B, Knopfle G, Schwanitz G. Clinical, cytogenetic, and molecular findings in 45, X/47, XX,+18 mosaicism: clinical report and review of the literature. Am J Med Genet. 2002;110(3):278–82. doi:10.1002/ajmg.10442.

    Article  PubMed  Google Scholar 

  61. Weber WW, Mamunes P, Day R, Miller P. Trisomy 17–18(E): studies in long-term survival with report of two autopsied cases. Pediatrics. 1964;34:533–41.

    CAS  PubMed  Google Scholar 

  62. Chrobok V, Simakova E. Temporal bone findings in trisomy 18 and 21 syndromes. Eur Arch Otorhinolaryngol. 1997;254(1):15–8.

    Article  CAS  PubMed  Google Scholar 

  63. Delatycki M, Gardner RJ. Three cases of trisomy 13 mosaicism and a review of the literature. Clin Genet. 1997;51(6):403–7.

    Article  CAS  PubMed  Google Scholar 

  64. Fukushima H, Schachern PA, Cureoglu S, Paparella MM. Temporal bone study of trisomy 13 syndrome. Laryngoscope. 2008;118(3):506–7. doi:10.1097/MLG.0b013e31815b2176.

    Article  PubMed  Google Scholar 

  65. Emanuel BS, Shaikh TH. Segmental duplications: an ‘expanding’ role in genomic instability and disease. Nat Rev Genet. 2001;2(10):791–800. doi:10.1038/35093500.

    Article  CAS  PubMed  Google Scholar 

  66. Jerome LA, Papaioannou VE. DiGeorge syndrome phenotype in mice mutant for the T-box gene, Tbx1. Nat Genet. 2001;27(3):286–91. doi:10.1038/85845.

    Article  CAS  PubMed  Google Scholar 

  67. Berend SA, Spikes AS, Kashork CD, Wu JM, Daw SC, Scambler PJ, et al. Dual-probe fluorescence in situ hybridization assay for detecting deletions associated with VCFS/DiGeorge syndrome I and DiGeorge syndrome II loci. Am J Med Genet. 2000;91(4):313–7.

    Article  CAS  PubMed  Google Scholar 

  68. Ford LC, Sulprizio SL, Rasgon BM. Otolaryngological manifestations of velocardiofacial syndrome: a retrospective review of 35 patients. Laryngoscope. 2000;110(3 Pt 1):362–7. doi:10.1097/00005537-200003000-00006.

    Article  CAS  PubMed  Google Scholar 

  69. Reyes MR, LeBlanc EM, Bassila MK. Hearing loss and otitis media in velo-cardio-facial syndrome. Int J Pediatr Otorhinolaryngol. 1999;47(3):227–33.

    Article  CAS  PubMed  Google Scholar 

  70. Shprintzen RJ. Velocardiofacial syndrome. Otolaryngol Clin North Am. 2000;33(6):1217–40, vi.

    Article  CAS  PubMed  Google Scholar 

  71. Van Esch H, Groenen P, Fryns JP, Van de Ven W, Devriendt K. The phenotypic spectrum of the 10p deletion syndrome versus the classical DiGeorge syndrome. Genet Couns. 1999;10(1):59–65.

    PubMed  Google Scholar 

  72. Shearer AE, DeLuca AP, Hildebrand MS, Taylor KR, Gurrola 2nd J, Scherer S, et al. Comprehensive genetic testing for hereditary hearing loss using massively parallel sequencing. Proc Natl Acad Sci U S A. 2010;107(49):21104–9. doi:10.1073/pnas.1012989107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Walsh T, Shahin H, Elkan-Miller T, Lee MK, Thornton AM, Roeb W, et al. Whole exome sequencing and homozygosity mapping identify mutation in the cell polarity protein GPSM2 as the cause of nonsyndromic hearing loss DFNB82. Am J Hum Genet. 2010;87(1):90–4. doi:10.1016/j.ajhg.2010.05.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatsuo Matsunaga .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Yamamoto, N., Kanno, A., Matsunaga, T. (2017). Genetics of Inner Ear Malformation and Cochlear Nerve Deficiency. In: Kaga, K. (eds) Cochlear Implantation in Children with Inner Ear Malformation and Cochlear Nerve Deficiency. Modern Otology and Neurotology. Springer, Singapore. https://doi.org/10.1007/978-981-10-1400-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-1400-0_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-1399-7

  • Online ISBN: 978-981-10-1400-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics