Skip to main content

Part of the book series: Modern Otology and Neurotology ((MODOTOL))

Abstract

Vestibular-evoked myogenic potential (VEMP) recording is a new tool for exploring the pathways from the sacculus, inferior vestibular nerve, and vestibular nucleus to sternocleidomastoid muscles (SCMs) in pediatric otology and neurotology. c-VEMP (saccular origin) and o-VEMP (utriculus origin) are clinically applied for a different diagnosis. After cochlear implantion, c-VEMPs are possible to record because of an electrical current spread from cochlear nerve which stimulates the inferior vestibular nerve.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Sheykholeslami K, Megerian CA, Arnold JE, Kaga K. Vestibular-evoked myogenic potentials in infancy and early childhood. Laryngoscope. 2005;115:1440–4. doi:10.1097/01.mlg.0000167976.58724.22.

    Article  PubMed  Google Scholar 

  2. Kaga K. Development of balance and motor function achieved by central vestibular compensation. Adv Neurol Sci. 2005;49:216–28.

    Google Scholar 

  3. Colebatch JG, Halmagyi GM, Skuse NF. Myogenic potentials generated by a click-evoked vestibulocollic reflex. J Neurol Neurosurg Psychiatry. 1994;57:190–7. doi:10.1136/jnnp.57.2.190.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sheykholeslami K, Kaga. The otolithic organ as a receptor of vestibular hearing revealed by vestibular-evoked myogenic potentials in patients with inner ear anomalies. Hear Res. 2002;165:62–7. doi:10.1016/S0378-5955(02)00278-2.

    Article  PubMed  Google Scholar 

  5. Sheykholeslami K, Habiby Kermany M, Kaga K. Frequency sensitivity range of the saccule to bone-conducted stimuli measured by vestibular evoked myogenic potentials. Hear Res. 2001;160:58–62. doi:10.1016/S0378-5995(01)00333-1.

    Article  CAS  PubMed  Google Scholar 

  6. Watson SRD, Colebatch JG. Vestibulocollic reflexes evoked by short-duration galvanic stimulation in man. J Physiol. 1998;513:587–97. doi:10.1111/j.1469-7793.1998.587bb.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sheykholeslami K, Habiby Kermany M, Kaga K. Bone-conducted vestibular evoked myogenic potentials in patients with congenital atresia of the external auditory canal. Int J Pediatr Otorhinolaryngol. 2001;57:25–9. doi:10.1016/S0165-5876(00)00430-4.

    Article  CAS  PubMed  Google Scholar 

  8. Shinjo Y, Jin Y, Kaga K. Assessment of vestibular function of infants and children with congenital and acquired deafness using the ice-water caloric test, rotation chair test and vestibular-evoked myogenic potential recording. Acta Otolaryngol (Stockh). 2007;127:736–47. doi:10.1080/00016480601002039.

    Article  Google Scholar 

  9. Tien HC, Linthicum Jr FH. Histopathologic changes in the vestibular after cochlear implantation. Otolaryngol Head Neck Surg. 2002;127:260–4. doi:10.1067/mhn.2002.128555.

    Article  PubMed  Google Scholar 

  10. Jin Y, Nakamura M, Shinjo Y, Kaga K. Vestibular-evoked myogenic potentials in cochlear implant children. Acta Otolaryngol (Stockh). 2006;126:164–9. doi:10.1080/00016480500312562.

    Article  Google Scholar 

  11. Jin Y, Shinjo Y, Akamatsu Y, Ogata E, Nakamura M, Yamasoba T, et al. Vestibular evoked myogenic potentials evoked by multichannel cochlear implant-influence of C levels. Acta Otolaryngol (Stockh). 2008;128:284–90. doi:10.1080/00016480701558872.

    Article  Google Scholar 

  12. Jacklar RK, Luxford WM, House WF. Congenital malformations of the inner ear: a classification based on embryogenesis. Laryngoscope. 1987;97:2–14. doi:10.1002/lary.5540971301.

    Article  Google Scholar 

  13. Kaga K, Suzuki JI, Roger RM, Tanaka Y. Influence of labyrinthine hypoactivity on gross motor development of infants. Ann N Y Acad Sci. 1981;374:412–20. doi:10.1111/j.1749-6632.1981.tb30887.x.

    Article  CAS  PubMed  Google Scholar 

  14. Anson BJ, Donaldson JA. Surgical anatomy of the temporal bone. New York: Raven; 1992.

    Google Scholar 

  15. Kaga K. Vertigo and balance disorders in children. Tokyo: Springer; 2014. doi:10.1007/978-4-431-54761-7.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kimitaka Kaga .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Kaga, K., Jin, Y. (2017). Vestibular-Evoked Myogenic Potential After Cochlear Implantion. In: Kaga, K. (eds) Cochlear Implantation in Children with Inner Ear Malformation and Cochlear Nerve Deficiency. Modern Otology and Neurotology. Springer, Singapore. https://doi.org/10.1007/978-981-10-1400-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-1400-0_11

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-1399-7

  • Online ISBN: 978-981-10-1400-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics