Skip to main content

Spectrum Sensing, Measurement, and Modeling

  • Reference work entry
  • First Online:
Handbook of Cognitive Radio
  • 1019 Accesses

Abstract

Modeling spectrum sensing is a critical step that paves the way to (i) identify the key impairments that affect the detection performance and (ii) help develop algorithms and receiver architectures that mitigate these impairments. In this chapter, realistic and practical sensing models are presented beyond those developed for classical detection theory. These models capture the impact of different sensing receiver impairments on several detectors such as the energy, the pilot, and the cyclostationarity detectors. Several receiver nonidealities are investigated, including noise uncertainty, imperfect synchronization, and cyclic frequency offsets. In addition, challenges and impairments pertaining to wideband sensing are analyzed, including the presence of strong adjacent interferers as well as the nonlinearities of the receiver RF front-end. From these models, several mitigation techniques are developed to compensate for the presence of the different sensing receiver impairments. Measurements and simulation results are presented throughout the chapter to show the negative impact of such impairments and validate that the developed mitigation techniques provide tangible performance gains.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 919.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. ATSC Digital Television Standard (2007) ATSC Std. A/53. http://www.atsc.org/standards.html

  2. Axell E, Leus G, Larsson EG, Poor HV (2012) Spectrum sensing for cognitive radio: state-of-the-art and recent advances. IEEE Signal Proc Mag 29(3):101–116. https://doi.org/10.1109/MSP.2012.2183771

    Article  Google Scholar 

  3. Cabric D (2008) Addressing feasibility of cognitive radios. IEEE Signal Proc Mag 25(6):85–93. https://doi.org/10.1109/MSP.2008.929367

    Article  Google Scholar 

  4. Cabric D, Mishra S, Brodersen R (2004) Implementation issues in spectrum sensing for cognitive radios. In: Proceedings of the 38th Asilomar Conference on Signals, System and Computers (ASILOMAR’04), vol 1, pp 772–776

    Google Scholar 

  5. Cabric D, Tkachenko A, Brodersen R (2006) Spectrum sensing measurements of pilot, energy, and collaborative detection. In: Proceedings of the IEEE Military Communications Conference (MILCOM’06), pp 1–7

    Google Scholar 

  6. Chuinard G, Cabric D, Ghosh M (2006) Sensing thresholds. Technical report, EEE 802.22-06/005/r3

    Google Scholar 

  7. Dandawate AV, Giannakis GB (1994) Statistical tests for presence of cyclostationarity. IEEE Trans Signal Process 42(9):2355–2369. https://doi.org/10.1109/78.317857

    Article  Google Scholar 

  8. Gardner W (1991) Exploitation of spectral redundancy in cyclostationary signals 8(2): 14–36

    Google Scholar 

  9. Harjani R, Cabric D, Markovic D, Sadler BM, Palani RK, Saha A, Shin H, Rebeiz E, Basir-Kazeruni S, Yuan FL (2015) Wideband blind signal classification on a battery budget. IEEE Commun Mag 53(10):173–181. https://doi.org/10.1109/MCOM.2015.7295481

    Article  Google Scholar 

  10. Hattab G, Ibnkahla M (2014) Enhanced pilot-based spectrum sensing algorithm. In: Proceedings of the IEEE Biennial Symposium on Communication (QBSC’14), pp 57–60. https://doi.org/10.1109/QBSC.2014.6841184

  11. Hattab G, Ibnkahla M (2014) Multiband spectrum access: great promises for future cognitive radio networks. Proc IEEE 102(3):282–306. https://doi.org/10.1109/JPROC.2014.2303977

    Article  Google Scholar 

  12. Hossain K, Champagne B (2011) Wideband spectrum sensing for cognitive radios with correlated subband occupancy. IEEE Signal Proc Lett 18(1):35–38. https://doi.org/10.1109/LSP.2010.2091405

    Article  Google Scholar 

  13. Kay S (1993) Fundamentals of statistical signal processing, vol I – estimation theory. Prentice Hall

    MATH  Google Scholar 

  14. Lunden J, Koivunen V, Huttunen A, Poor HV (2009) Collaborative cyclostationary spectrum sensing for cognitive radio systems. IEEE Trans Signal Process 57(11):4182–4195. https://doi.org/10.1109/TSP.2009.2025152

    Article  MathSciNet  Google Scholar 

  15. Mariani A, Giorgetti A, Chiani M (2011) Effects of noise power estimation on energy detection for cognitive radio applications. IEEE Trans Commun 59(12):3410–3420. https://doi.org/10.1109/TCOMM.2011.102011.100708

    Article  Google Scholar 

  16. Paysarvi-Hoseini P, Beaulieu NC (2011) Optimal wideband spectrum sensing framework for cognitive radio systems. IEEE Trans Signal Process 59(3):1170–1182. https://doi.org/10.1109/TSP.2010.2096220

    Article  MathSciNet  Google Scholar 

  17. Pei Y, Liang YC, Teh KC, Li KH (2009) How much time is needed for wideband spectrum sensing? IEEE Trans Wirel Commun 8(11):5466–5471. https://doi.org/10.1109/TWC.2009.090350

    Article  Google Scholar 

  18. Quan Z, Cui S, Sayed A, Poor H (2009) Optimal multiband joint detection for spectrum sensing in cognitive radio networks. IEEE Trans Signal Process 57(3):1128–1140. https://doi.org/10.1109/TSP.2008.2008540

    Article  MathSciNet  Google Scholar 

  19. Rebeiz E, Ghadam ASH, Valkama M, Cabric D (2015) Spectrum sensing under RF non-linearities: performance analysis and DSP-enhanced receivers. IEEE Trans Signal Process 63(8):1950–1964. https://doi.org/10.1109/TSP.2015.2401532

    Article  MathSciNet  Google Scholar 

  20. Rebeiz E, Urriza P, Cabric D (2012) Experimental analysis of cyclostationary detectors under cyclic frequency offsets. In: Conference on Signals, Systems and Computers (ASILOMAR’12), pp 1031–1035

    Google Scholar 

  21. Rebeiz E, Urriza P, Cabric D (2013) Optimizing wideband cyclostationary spectrum sensing under receiver impairments. IEEE Trans Signal Process 61(15):3931–3943. https://doi.org/10.1109/TSP.2013.2262680

    Article  MathSciNet  Google Scholar 

  22. Rebeiz E, Yuan FL, Urriza P, Markovi D, Cabric D (2014) Energy-efficient processor for blind signal classification in cognitive radio networks. IEEE Trans Circuits Syst I Regul Pap 61(2):587–599. https://doi.org/10.1109/TCSI.2013.2278392

    Article  Google Scholar 

  23. Sun H, Nallanathan A, Wang CX, Chen Y (2013) Wideband spectrum sensing for cognitive radio networks: a survey. IEEE Wirel Commun 20(2):74–81. https://doi.org/10.1109/MWC.2013.6507397

    Article  Google Scholar 

  24. Tandra R, Sahai A (2008) SNR walls for signal detection. IEEE J Sel Top Signal Process 2(1):4–17. https://doi.org/10.1109/JSTSP.2007.914879

    Article  Google Scholar 

  25. Yu TH, Rodriguez-Parera S, Markovic D, Cabric D (2010) Cognitive radio wideband spectrum sensing using multitap windowing and power detection with threshold adaptation. In: 2010 IEEE International Conference on Communications, pp 1–6. https://doi.org/10.1109/ICC.2010.5502024

  26. Yu TH, Sekkat O, Rodriguez-Parera S, Markovic D, Cabric D (2011) A wideband spectrum-sensing processor with adaptive detection threshold and sensing time. IEEE Trans Circuits Syst I Regul Pap 58(11):2765–2775. https://doi.org/10.1109/TCSI.2011.2143010

    Article  MathSciNet  Google Scholar 

  27. Yu TH, Yang CH, Cabric D, Markovic D (2012) A 7.4-mW 200-MS/s wideband spectrum sensing digital baseband processor for cognitive radios. IEEE J Solid-State Circuits 47(9):2235–2245. https://doi.org/10.1109/JSSC.2012.2195933

    Article  Google Scholar 

  28. Yucek T, Arslan H (2009) A survey of spectrum sensing algorithms for cognitive radio applications. Commun Surveys Tutor 11(1):116–130. https://doi.org/10.1109/SURV.2009.090109

    Article  Google Scholar 

  29. Zeng Y, Liang YC (2010) Robustness of the cyclostationary detection to cyclic frequency mismatch. In: 21st Annual IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, pp 2704–2709. https://doi.org/10.1109/PIMRC.2010.5671799

  30. Zou Q, Mikhemar M, Sayed AH (2009) Digital compensation of cross-modulation distortion in software-defined radios. IEEE J Sel Top Signal Process 3(3):348–361. https://doi.org/10.1109/JSTSP.2009.2020266

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ghaith Hattab .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Hattab, G., Cabric, D. (2019). Spectrum Sensing, Measurement, and Modeling. In: Zhang, W. (eds) Handbook of Cognitive Radio . Springer, Singapore. https://doi.org/10.1007/978-981-10-1394-2_5

Download citation

Publish with us

Policies and ethics