Skip to main content

Air Quality: Global and Regional Emissions of Particulate Matter, SOx, and NOx

  • Chapter
  • First Online:
Plant Responses to Air Pollution

Abstract

Poor air quality is known to have deleterious effects on the environment and human health. A variety of air pollutants are identified at unprecedented levels. Particulate matter and oxides of sulfur and nitrogen are common pollutants of the atmosphere. The emissions of these criteria pollutants have been studied widely. An overview of their global and regional emissions is helpful in assessing the status of contributions from various sectors and efficacy of control strategies over the years in both developed and developing nations of the world. Particulate matter levels in developed regions have been observed to have decreased substantially toward the end of the twentieth century, contrary to the trend of emissions in developing countries. Transportation and power generation sectors are key sources of PM emissions. Oxides of sulfur have been observed to have peaked in the 1970s and subsequently decreased thereafter on a global scale; however, the developing economies have registered a rise in emissions. Similar trend has been observed for oxides of nitrogen with decline of emissions from developed regions of the world and subsequent increase from developing countries in the earlier part of the twenty-first century. Timely intervention of suitable strategies to combat emissions in developing regions is crucial to nullify the increasing trend of emissions. The present chapter provides an overview of three criteria air pollutants – particulate matter, oxides of sulfur, and oxides of nitrogen with respect to their changing global and regional emission scenario in the past decades and sector-wise contributions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • ALA (2013) American Lung Association, Disparities in the impact of air pollution. http://www.stateoftheair.org/2013/health-risks/health-risks-disparities.html. Accessed on 16 June 2014

  • ATSDR (1998) Agency for Toxic Substances and Disease Registry. Toxicological profile for sulfur dioxide. US Department of Health and Human Services, Public Health Service, Atlanta

    Google Scholar 

  • ATSDR (2002) Agency for Toxic Substances and Disease Registry. ToxFAQsTM nitrogen oxides. US Department of Health and Human Services, Public Health Service, Atlanta

    Google Scholar 

  • Bateson TF, Schwartz J (2004) Who is sensitive to the effects of particulate air pollution on mortality? A case-crossover analysis of effect modifiers. Epidemiology 15(2):143–149

    Article  PubMed  Google Scholar 

  • Black F, Tejada S, Gurevich M (1998) Alternative fuel motor vehicle tailpipe and evaporative emissions composition and ozone potential. J Air Waste Manage Assoc 48(7):578–591

    Article  CAS  Google Scholar 

  • Bowman CT (1991) Chemistry of gaseous pollutant formation and destruction. In: Bartok W, Sarofim AF (eds) Fossil fuel combustion. Wiley, New York, pp 215–260

    Google Scholar 

  • Bremmer SA, Anderson HR, Atkinson RW et al (1999) Short term association between outdoor air pollution and mortality in London 1992–4. Occup Environ Med 56(4):237–244

    Article  Google Scholar 

  • Brimblecombe P (ed) (2003) The effects of air pollution on the built environment, vol 2, Air Pollution Reviews. World Scientific Publishing Company, New Jersey

    Google Scholar 

  • Capareda SC L, Wang CB, Parnell Jr, Shaw BW (2004) Particle size distribution of particulate matter emitted by agricultural operations: impacts on FRM PM10 and PM2.5 concentration measurements. In: Proceedings of the 2004 Beltwide Cotton Production conferences. National Cotton Council, Memphis, TN

    Google Scholar 

  • Chen TM, Gokhale J, Shofer S, Kuschner WG (2007) Outdoor air pollution: nitrogen dioxide, sulfur dioxide, and carbon monoxide health effects. Am J Med Sci 333(4):249–256

    Article  PubMed  Google Scholar 

  • Cohen AJ, Pope CA (1995) Lung cancer and air pollution. Environ Health Perspect 103(8):219–224

    Article  PubMed  PubMed Central  Google Scholar 

  • DEFRA (2013) Department for Environment Food & Rural Affairs, United Kingdom. http://uk-air.defra.gov.uk/air-pollution/effects. Accessed 13 June 2014

  • Delmas R, Serça D, Jambert C (1997) Global inventory of NOx sources. Nutr Cycl Agroecosyst 48(1):51–60

    Article  CAS  Google Scholar 

  • Dey S, Di Girolamo L, van Donkelaar A, Tripathi SN, Gupta T, Mohan M (2012) Variability of outdoor fine particulate (PM2.5) concentration in the Indian Subcontinent: a remote sensing approach. Remote Sens Environ 127:153–161

    Article  Google Scholar 

  • Dockery D, Pope CA, Xu X, Spengler J, Ware J, Fay M, Ferris B, Speizer F (1993) An association between air pollution and mortality in six U.S. cities. N Engl J Med 329:1753–1759

    Article  CAS  PubMed  Google Scholar 

  • EEA (2012) Emissions of primary PM2.5 and PM10 particulate matter. European Environmental Agency. http://www.eea.europa.eu/data-and-maps/indicators/emissions-of-primary-particles-and-5. Accessed on 14 June 2014

  • EEA (2014) European Environmental Agency. http://www.eea.europa.eu/data-and-maps/explore-interactive-maps#c5=air&c0=5&b_start=0. Accessed on 14 June 2104

  • Forastiere F, Stafoggia M, Tasco C, Picciotto S, Agabiti N, Cesaroni G et al (2006) Socioeconomic status, particulate air pollution, and daily mortality: differential exposure or differential susceptibility. Am J Ind Med 50(3):208–216

    Article  Google Scholar 

  • Gao C, Yin H, Ai N, Huang Z (2009) Historical analysis of SO2 pollution control policies in China. Environ Manage 43(3):447–457

    Article  PubMed  Google Scholar 

  • Ghude SD, RJ V d A, Beig G, Fadnavis S, Polade SD (2009) Satellite derived trends in NO2 over the major global hotspot regions during the past decade and their inter-comparison. Environ Pollut 157(6):1873–1878

    Google Scholar 

  • Ghude SD, Kulkarni SH, Jena C, Pfister GG, Beig G, Fadnavis S, van der A RJ (2013) Application of satellite observations for identifying regions of dominant sources of nitrogen oxides over the Indian Subcontinent. J Geophys Res 118(2):1–15

    Google Scholar 

  • Goncalves FLT, Carvalho LMV, Conde FC, Latorre MRDO, Saldiva PHN, Braga ALF (2005) The effects of air pollution and meteorological parameters on respiratory morbidity during the summer in São Paulo City. Environ Int 31(3):343–349

    Article  CAS  PubMed  Google Scholar 

  • Grantz DA, Garner JH, Johnson DW (2003) Ecological effects of particulate matter. Environ Int 29(2–3):213–239

    Article  CAS  PubMed  Google Scholar 

  • Hameed S, Dignon J (1988) Changes in the geographical distributions of global emissions of NOx and SOx from fossil fuel combustion between 1966–1980. Atmos Environ 22(3):441–449

    Article  CAS  Google Scholar 

  • Hand JL, Schichtel BA, Malm WC, Pitchford ML (2012) Particulate sulfate ion concentration and SO2 emission trends in the United States from the early 1990s through 2010. Atmos Chem Phys 12(21):10353–10365

    Article  CAS  Google Scholar 

  • Hilboll A, Richter A, Burrows JP (2013) Long-term changes of tropospheric NO2 over megacities derived from multiple satellite instruments. Atmos Chem Phys 13(8):4145–4169

    Article  Google Scholar 

  • Huntrieser H, Feigl C, Schroder F, Gerbig C, van Velthoven P, Flatoy F, Thery C, Petzold A, Holler H, Schumann A (2002) Contribution of lightning- produced NOx to the European and global NOx budget: results and estimates from airborne EULINOX measurements. J Geophys Res 2(107):4113

    Google Scholar 

  • IARC (2013) International Agency for Research on Cancer, outdoor air pollution a leading environmental cause of cancer deaths. http://www.iarc.fr/en/media centre/iarcnews/pdf/pr221_E.pdf. Accessed 12 May 2014

  • IPCC (2001) Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. In: Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA (eds) Climate change 2001: the scientific basis. Cambridge University Press, Cambridge/New York, p 881

    Google Scholar 

  • IPCC (2007) Contribution of Working Group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Cambridge University Press, Cambridge/New York, p 996

    Google Scholar 

  • Jaeglé L, Steinberger L, Martin RV, Chance K (2005) Global partitioning of NOx sources using satellite observations: relative roles of fossil fuel combustion, biomass burning and soil emissions. Faraday Discuss 130:407–423

    Article  PubMed  Google Scholar 

  • Jerrett M, Burnett RT, Brook J, Kanaroglou P, Giovis C, Finkelstein N et al (2004) Do socioeconomic characteristics modify the short term association between air pollution and mortality? Evidence from a zonal time series in Hamilton, Canada. J Epidemiol Commun H 58(1):31–40

    Article  CAS  Google Scholar 

  • Karagulian F, Belis CA, Dora CFC, Prüss-Ustün AM, Bonjour S, Adair-Rohani H, Amann M (2015) Contributions to cities’ ambient particulate matter (PM): a systematic review of local source contributions at global level. Atmos Environ 120:475–483

    Article  CAS  Google Scholar 

  • Kassomenos PA, Vardoulakis S, Chaloulakou A, Paschalidou AK, Grivas G, Borge R, Lumbreras J (2014) Study of PM10 and PM2.5 levels in three European cities: analysis of intra and inter urban variations. Atmos Environ 87:153–163

    Article  CAS  Google Scholar 

  • Kim JW, Park S, Lim CW, Lee K, Kim B (2014) The role of air pollutants in initiating liver disease. Toxicol Res 30(2):65–70

    Article  PubMed  PubMed Central  Google Scholar 

  • Klimont Z, Smith SJ, Cofala J (2013) The last decade of global anthropogenic sulfur dioxide: 2000–2011 emissions. Environ Res Lett 8:014003

    Article  Google Scholar 

  • Kundu S, Stone EA (2014) Composition and sources of fine particulate matter across urban and rural sites in the Midwestern United States. Environ Sci Proc Impacts 28(6):1360–1370

    Article  Google Scholar 

  • Lamsal LN, Martin RV, Padmanabhan A, van Donkelaar A, Zhang Q, Sioris CE, Chance K, Kurosu TP, Newchurch MJ (2011) Application of satellite observations for timely updates to global anthropogenic NOx emission inventories. Geophys Res Lett 38(5):L05810

    Article  Google Scholar 

  • Li J, Carlsona BE, Lacisa AA (2015) How well do satellite AOD observations represent the spatial and temporal variability of PM2.5 concentration for the United States? Atmos Environ 102:260–273

    Article  CAS  Google Scholar 

  • Logan JA (1983) Nitrogen oxides in the troposphere: global and regional budgets. J Geophys Res 88(C15):10785–10807

    Article  CAS  Google Scholar 

  • Lu Z, Streets DG, Zhang Q, Wang S, Carmichael GR, Cheng YF, Wei C, Chin M, Diehl T, Tan Q (2010) Sulfur dioxide emissions in China and sulfur trends in East Asia since 2000. Atmos Chem Phys 10:6311–6331

    Article  CAS  Google Scholar 

  • Luo XS, Ip CCM, Li W, Tao S, Li XD (2014) Spatial–temporal variations, sources, and transport of airborne inhalable metals (PM10) in urban and rural areas of northern China. Atmos Chem Phys Discus 14:13133–13165

    Article  Google Scholar 

  • Malhotra SS, Hocking D (1976) Biochemical and cytological effects of sulphur dioxide on plant metabolism. New Phytol 76(2):227–237

    Article  CAS  Google Scholar 

  • Mar TF, Norris GA, Loenig JQ et al (2000) Associations between air pollution and mortality in Phoenix, 1995–1997. Environ Health Perspect 108(4):347–353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marrapu P, Cheng Y, Beig G, Sahu S, Srinivas R, Carmichael GR (2014) Air quality in Delhi during the Commonwealth Games. Atmos Chem Phys 14(19):10619–10630

    Article  CAS  Google Scholar 

  • Maynard RL, Ayres J (2014) Air pollution and health. In: Harrison RM (ed) Pollution: causes, effects and control, vol 5E. RSC Publishing, Cambridge

    Google Scholar 

  • Neidell MJ (2004) Air pollution, health, and socio-economic status: the effect of outdoor air quality on childhood asthma. J Health Econ 23(6):1209–1236

    Article  PubMed  Google Scholar 

  • OECD (2012) The Organization for Economic Co-operation and Development Environmental outlook to 2050: the consequences of inaction. http://www.oecd.org/env/indicators-modelling-outlooks/oecdenvironmentaloutlookto2050theconsequencesofinaction.htm. Accessed 10 July 2014

  • OECD (2014) The effects of air pollution on mortality in socially deprived urban areas in Hong Kong, China. Environ Health Perspect Organization for Economic Co-operation and Development. The Cost of Air Pollution: Health Impacts of Road Transport, OECD Publishing, Paris. doi:http://dx.doi.org/10.1787/9789264210448-en

  • Pope CA III, Burnett RT, Thurston GD, Thun MJ, Calle EE, Krewski D et al (2004) Cardiovascular mortality and long-term exposure to particulate air pollution: epidemiological evidence of general pathophysiological pathways of disease. Circulation 109(1):71–77

    Article  PubMed  Google Scholar 

  • Pulido L (2000) Rethinking environmental racism: white privilege and urban development in southern California. Am Geogr 90(1):12–40

    Article  Google Scholar 

  • Ray S, Kim KH (2014) The pollution status of sulfur dioxide in major urban areas of Korea between 1989 and 2010. Atmos Res 147–148:101–110

    Article  Google Scholar 

  • Richter A, Burrows JP, Nüß H, Granier C, Niemeier U (2005) Increase in tropospheric nitrogen dioxide over China observed from space. Nature 437:129–132

    Google Scholar 

  • Saxena P, Seigneur C (1987) On the oxidation of SO2 to sulfate in atmospheric aerosols. Atmos Environ 21(4):807–812

    Article  CAS  Google Scholar 

  • Seinfeld JH, Pandis SN (2006) Atmospheric chemistry and physics: from air pollution to climate change. Wiley, Hoboken

    Google Scholar 

  • Smith SJ, Andres R, Conception E, Lurz J (2004) Sulfur dioxide emissions: 1850–2000. Joint Global Change Research Institute report. Pacific Northwest National Laboratory-14537

    Google Scholar 

  • Smith SJ, van Aardenne J, Klimont Z, Andres RJ, Volke A, Arias SD (2011) Anthropogenic sulfur dioxide emissions: 1850–2005. Atmos Chem Phys 11:1101–1116

    Article  CAS  Google Scholar 

  • Streets DG, Bond TC, Carmichael GR, Fernandes SD, Fu Q, He D, Klimont Z, Nelson SM, Tsai NY, Wang MQ, Woo J-H, Yarber KF (2003) An inventory of gaseous and primary aerosol emissions in Asia in the year 2000. J Geophys Res 108:8809

    Google Scholar 

  • Sunyer J, Schwartz J, Tobias A, Macfarlane D, Garcia J, Anto JM (2000) Patients with chronic obstructive pulmonary disease are at increased risk of death associated with urban particle air pollution: a case-crossover analysis. Am J Epidemiol 151(1):50–56

    Article  CAS  PubMed  Google Scholar 

  • Takeshita T (2011) Global scenarios of air pollutant emissions from road transport through to 2050. Int J Environ Res Public Health 8(7):3032–3062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tao F, Gonzalez-Flecha B, Kobzik L (2003) Reactive oxygen species in pulmonary inflammation by ambient particulates. Free Radic Biol Med 35(4):327–340

    Article  CAS  PubMed  Google Scholar 

  • Thomas MD (1961) Effects of air pollution on plants. In: Air pollution. Columbia University Press, New York, p 442

    Google Scholar 

  • Upadhyay A, Clements FM, Herckes P (2011) Chemical speciation of PM2.5 and PM10 in South Phoenix, Arizona. J Air Waste Manage Assoc 61(3):302–310

    Article  CAS  Google Scholar 

  • USEIA (2013) Power plant emissions of sulfur dioxide and nitrogen oxides continue to decline in 2012. United States Energy Information Administration https://www.eia.gov/todayinenergy/detail.cfm?id=10151. Accessed on 31 Dec 2015

  • USEPA (1998) United States Environmental Protection Agency. NOx: how nitrogen oxides affect the way we live and breathe. Office of Air Quality Planning and Standards Research Triangle Park, NC. EPA-456/F-98-005

    Google Scholar 

  • USEPA (1999) United States Environmental Protection Agency. Technical Bulletin “Nitrogen Oxides (NOx), Why and How they are controlled. Office of Air Quality Planning and Standards Research Triangle Park. EPA 456/F-99-006R

    Google Scholar 

  • USEPA (2002) United States Environmental Protection Agency. Health Assessment Document for Diesel Emission. Office of Research and Development, Durham. EPA/600/8-90/057C

    Google Scholar 

  • USEPA (2005) United States Environmental Protection Agency. Guideline for carcinogen risk assessment. Risk Assessment Forum, Washington, DC. EPA/630/P-03/001F

    Google Scholar 

  • USEPA (2014) AQI- Air quality index- a guide to air quality and your health. U.S. Environmental Protection Agency Office of Air Quality Planning and Standards Outreach and Information Division Research Triangle Park, NC February 2014 EPA-456/F-14-002

    Google Scholar 

  • USEPA (2015a) United States Environmental Protection Agency. http://www.epa.gov/haps/initial-list-hazardous-air-pollutants-modifications. Accessed on 23 Dec 2015

  • USEPA (2015b) United States Environmental Protection Agency. http://www3.epa.gov/airquality/nitrogenoxides/health.html. Accessed on 23 Dec 2015

  • USEPA (2016) United States Environmental Protection Agency. http://www3.epa.gov/airtrends/pm.html. Accessed 10 Jan 2016

  • Van Dingenen R, Raes F, Putaud JP, Baltensperger U, Charron A, Facchini MC, Decesari S, Fuzzi S, Gehrig R, Hansson HC, Harrison RM, Huglin C, Jones AM, Laj P, Lorbeer G, Maenhaut W, Palmgren F, Querol X, Rodriguez S, Schneider J, ten Brink H, Tunved P, Torseth K, Wehn B, Weingartner E, Wiedensohler A, Wahlin P (2004) A European aerosol phenomenology-1: physical characteristics of particulate matter at Kerbside, urban, rural and background sites in Europe. Atmos Environ 38(16):2561–2577

    Article  Google Scholar 

  • van Donkelaar A, Martin RV, Brauer M, Boys BL (2015) Use of satellite observations for long-term exposure assessment of global concentrations of fine particulate matter. Environ Health Perspect 123(2):135–143

    PubMed  Google Scholar 

  • Varshney CK, Garg JK, Lauenroth WK, Heitschmidt RK (1979) Plant responses to sulfur dioxide pollution. Crit Rev Env Contr 9(1):27–49

    Article  CAS  Google Scholar 

  • Welch H (1998) Mercury accumulation in snow and sea ice. Synopsis of research conducted under the 1997/98 Northern Contaminants Program. Indian and Northern Affairs Canada, Ottawa

    Google Scholar 

  • WHO (2000) World Health Organization. Effects of sulfur dioxide on vegetation: critical levels Air Quality Guidelines – Second Edition. WHO Regional Office for Europe, Copenhagen, Denmark

    Google Scholar 

  • WHO (2014) World Health Organization. http://www.un.org/climatechange/blog/2014/03/7-million-premature-deaths-annually-linked-to-air-pollution/#content. Accessed 24 June 2014

  • Winner WE, Mooney HA, Goldstun RA (1985) Sulphur dioxide and vegetation: physiology, ecology, and policy issues. Standard Univ Press, Stanford

    Google Scholar 

  • Wong CM, Ou CQ, Chan KP, Chau YK, Thach TQ, Yang L et al (2008) The effects of air pollution on mortality in socially deprived urban areas in Hong Kong, China. Environ Health Perspect 116(9):1189–1194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Darpa Saurav Jyethi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Jyethi, D.S. (2016). Air Quality: Global and Regional Emissions of Particulate Matter, SOx, and NOx. In: Kulshrestha, U., Saxena, P. (eds) Plant Responses to Air Pollution. Springer, Singapore. https://doi.org/10.1007/978-981-10-1201-3_2

Download citation

Publish with us

Policies and ethics