Skip to main content

Development of a Coarse-Grained Water Forcefield via Multistate Iterative Boltzmann Inversion

  • Chapter
  • First Online:

Part of the book series: Molecular Modeling and Simulation ((MMAS))

Abstract

A coarse-grained water model is developed using multistate iterative Boltzmann inversion. Following previous work, the k-means algorithm is used to dynamically map multiple water molecules to a single coarse-grained bead, allowing the use of structure-based coarse-graining methods. The model is derived to match the bulk and interfacial properties of liquid water and improves upon previous work that used single state iterative Boltzmann inversion. The model accurately reproduces the density and structural correlations of water at 305 K and 1.0 atm, stability of a liquid droplet at 305 K, and shows little tendency to crystallize at physiological conditions. This work also illustrates several advantages of using multistate iterative Boltzmann inversion for deriving generally applicable coarse-grained forcefields.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Wang, Y., Voth, G.A.: Unique spatial heterogeneity in ionic liquids. J. Am. Chem. Soc. 127, 12192–12193 (2005)

    Article  CAS  Google Scholar 

  2. Bhargava, B.L., DeVane, R., Klein, M.L., Balasubramanian, S.: Nanoscale organization in room temperature ionic liquids: a coarse grained molecular dynamics simulation study. Soft Matter 3, 1395–1400 (2007)

    Article  CAS  Google Scholar 

  3. Karimi-Varzaneh, H.A., Müller-Plathe, F., Balasubramanian, S., Carbone, P.: Studying long-time dynamics of imidazolium-based ionic liquids with a systematically coarse-grained model. Phys. Chem. Chem. Phys. 12, 4714–4724 (2010)

    Article  CAS  Google Scholar 

  4. Padding, J., Briels, W.: Time and length scales of polymer melts studied by coarse-grained molecular dynamics simulations. J. Chem. Phys. 117, 925–943 (2002)

    Article  CAS  Google Scholar 

  5. Harmandaris, V.A., Floudas, G., Kremer, K.: Temperature and pressure dependence of polystyrene dynamics through molecular dynamics simulations and experiments. Macromolecules 44, 393–402 (2010)

    Article  Google Scholar 

  6. Sun, Q., Faller, R.: Crossover from unentangled to entangled dynamics in a systematically coarse-grained polystyrene melt. Macromolecules 39, 812–820 (2006)

    Article  CAS  Google Scholar 

  7. Milano, G., Müller-Plathe, F.: Mapping atomistic simulations to mesoscopic models: a systematic coarse-graining procedure for vinyl polymer chains. J. Phys. Chem. B 109, 18609–18619 (2005)

    Article  CAS  Google Scholar 

  8. Shinoda, W., DeVane, R., Klein, M.L.: Coarse-grained molecular modeling of non-ionic surfactant self-assembly. Soft Matter 4, 2454–2462 (2008)

    Article  CAS  Google Scholar 

  9. Lee, H., Pastor, R.W.: Coarse-grained model for PEGylated lipids: effect of PEGylation on the size and shape of self-assembled structures. J. Phys. Chem. B 115, 7830–7837 (2011)

    Article  CAS  Google Scholar 

  10. Srinivas, G., Discher, D.E., Klein, M.L.: Self-assembly and properties of diblock copolymers by coarse-grain molecular dynamics. Nat. Mater. 3, 638–644 (2004)

    Article  CAS  Google Scholar 

  11. Nguyen, H.D., Hall, C.K.: Molecular dynamics simulations of spontaneous fibril formation by random-coil peptides. Proc. Natl. Acad. Sci. U.S.A. 101, 16180–16185 (2004)

    Article  CAS  Google Scholar 

  12. Iacovella, C.R., Keys, A.S., Glotzer, S.C.: Self-assembly of soft-matter quasicrystals and their approximants. Proc. Natl. Acad. Sci. U.S.A. 108, 20935–20940 (2011)

    Article  CAS  Google Scholar 

  13. Hadley, K.R., McCabe, C.: Coarse-grained molecular models of water: a review. Mol. Simul. 38, 671–681 (2012)

    Article  CAS  Google Scholar 

  14. Basdevant, N., Borgis, D., Ha-Duong, T.: A semi-implicit solvent model for the simulation of peptides and proteins. J. Comput. Chem. 25, 1015–1029 (2004)

    Article  CAS  Google Scholar 

  15. Basdevant, N., Ha-Duong, T., Borgis, D.: Particle-based implicit solvent model for biosimulations: application to proteins and nucleic acids hydration. J. Chem. Theory Comput. 2, 1646–1656 (2006)

    Article  CAS  Google Scholar 

  16. Masella, M., Borgis, D., Cuniasse, P.: Combining a polarizable force-field and a coarse-grained polarizable solvent model. II. accounting for hydrophobic effects. J. Comput. Chem. 32, 2664–2678 (2011)

    Article  CAS  Google Scholar 

  17. Marrink, S.J., Risselada, H.J., Yefimov, S., Tieleman, D.P., de Vries, A.H.: The MARTINI force field: coarse grained model for biomolecular simulations. J. Phys. Chem. B 111, 7812–7824 (2007)

    Article  CAS  Google Scholar 

  18. Chiu, S.-W., Scott, H.L., Jakobsson, E.: A coarse-grained model based on morse potential for water and n-alkanes. J. Chem. Theory Comput. 6, 851–863 (2010)

    Article  CAS  Google Scholar 

  19. Shinoda, W., DeVane, R., Klein, M.L.: Multi-property fitting and parameterization of a coarse grained model for aqueous surfactants. Mol. Simul. 33, 27–36 (2007)

    Article  CAS  Google Scholar 

  20. Hadley, K.R., McCabe, C.: On the investigation of coarse-grained models for water: balancing computational efficiency and the retention of structural properties. J. Phys. Chem. B 114, 4590–4599 (2010)

    Article  CAS  Google Scholar 

  21. Van Hoof, B., Markvoort, A.J., Van Santen, R.a.; Hilbers, P.a.J.: The CUMULUS coarse graining method: transferable potentials for water and solutes. J. Phys. Chem. B 115, 10001–10012 (2011)

    Google Scholar 

  22. Reith, D., Pütz, M., Müller-Plathe, F.: Deriving effective mesoscale potentials from atomistic simulations. J. Comput. Chem. 24, 1624–1636 (2003)

    Article  CAS  Google Scholar 

  23. Moore, T.C., Iacovella, C.R., McCabe, C.: Derivation of coarse-grained potentials via multistate iterative Boltzmann inversion. J. Chem. Phys. 140, 224104 (2014)

    Article  Google Scholar 

  24. Hadley, K.R., McCabe, C.: A coarse-grained model for amorphous and crystalline fatty acids. J. Chem. Phys. 132, 134–505 (2010)

    Google Scholar 

  25. Bayramoglu, B., Faller, R.: Coarse-grained modeling of polystyrene in various environments by iterative Boltzmann inversion. Macromolecules 45, 9205–9219 (2012)

    Article  CAS  Google Scholar 

  26. Qian, H.J., et al.: Temperature-transferable coarse-grained potentials for ethylbenzene, polystyrene, and their mixtures. Macromolecules 41, 9919–9929 (2008)

    Article  CAS  Google Scholar 

  27. Bayramoglu, B., Faller, R.: Modeling of polystyrene under confinement: exploring the limits of iterative boltzmann inversion. Macromolecules 46, 7957–7976 (2013)

    Article  CAS  Google Scholar 

  28. Carbone, P., et al.: Transferability of coarse-grained force fields: the polymer case. J. Chem. Phys. 128, 064904 (2008)

    Article  Google Scholar 

  29. Hartigan, J.A., Wong, M.A.: Algorithm AS 136: a k-means clustering algorithm. Appl. Stat. 28, 100–108 (1979)

    Article  Google Scholar 

  30. Jorgensen, W.L., Chandrasekhar, J., Madura, J.D., Impey, R.W., Klein, M.L.: Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79, 926–935 (1983)

    Article  CAS  Google Scholar 

  31. Plimpton, S.: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995)

    Article  CAS  Google Scholar 

  32. LAMMPS WWW Site—http://lammps.sandia.gov, http://lammps.sandia.gov

  33. A git repository for this package is hosted at https://github.com/ctk3b/msibi, http://github.com/ctk3b/msibi

  34. Anderson, J.A., Lorenz, C.D., Travesset, A.: General purpose molecular dynamics simulations fully implemented on graphics processing units. J. Comput. Phys. 227, 5342–5359 (2008)

    Article  Google Scholar 

  35. Glaser, J., Nguyen, T.D., Anderson, J.A., Lui, P., Spiga, F., Millan, J.A., Morse, D.C., Glotzer, S.C.: Strong scaling of general-purpose molecular dynamics simulations on GPUs. Comput. Phys. Commun. 192, 97–107 (2015)

    Article  CAS  Google Scholar 

  36. HOOMD-Blue web page. http://codeblue.umich.edu/hoomd-blue, http://codeblue.umich.edu/hoomd-blue

  37. McGibbon, R.T., Beauchamp, K.A., Schwantes, C.R., Wang, L.-P., Hernández, C.X., Harrigan, M.P., Lane, T.J., Swails, J.M., Pande, V.S.: MDTraj: a modern, open library for the analysis of molecular dynamics trajectories. bioRxiv 2014

    Google Scholar 

  38. A Git repository for this package is hosted at https://github.com/mdtraj/mdtraj. http://github.com/ctk3b/msibi

  39. Vega, C., de Miguel, E.: Surface tension of the most popular models of water by using the test-area simulation method. J. Chem. Phys. 126, 154707 (2007)

    Article  CAS  Google Scholar 

  40. Wang, H., Junghans, C., Kremer, K.: Comparative atomistic and coarse-grained study of water: what do we lose by coarse-graining? Eur. Phys. J. E 28, 221–229 (2009)

    Article  Google Scholar 

  41. Yesylevskyy, S.O., Schafer, L.V., Sengupta, D., Marrink, S.J.: Polarizable water model for the coarse-grained MARTINI force field. PLoS Comput. Biol. 6, e1000810 (2010)

    Article  Google Scholar 

  42. Zavadlav, J., Melo, M.N., Marrink, S.J., Praprotnik, M.: Adaptive resolution simulation of polarizable supramolecular coarse-grained water models. J. Chem. Phys. 142, 244118 (2015)

    Article  Google Scholar 

  43. Mukherjee, B., Delle Site, L., Kremer, K., Peter, C.: Derivation of coarse grained models for multiscale simulation of liquid crystalline phase transitions. J. Phys. Chem. B 116, 8474–8484 (2012)

    Google Scholar 

Download references

Acknowledgments

Funding was provided by Grant No. R01AR057886-01 from the National Institute of Arthritis and Musculoskeletal and Skin Diseases and the National Science Foundation under Grant OCI-0904879.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Christopher R. Iacovella or Clare McCabe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Moore, T.C., Iacovella, C.R., McCabe, C. (2016). Development of a Coarse-Grained Water Forcefield via Multistate Iterative Boltzmann Inversion. In: Snurr, R., Adjiman, C., Kofke, D. (eds) Foundations of Molecular Modeling and Simulation. Molecular Modeling and Simulation. Springer, Singapore. https://doi.org/10.1007/978-981-10-1128-3_3

Download citation

Publish with us

Policies and ethics