Skip to main content

Bioinformatics and Orphan Diseases

  • Chapter
  • First Online:

Part of the book series: Translational Bioinformatics ((TRBIO,volume 10))

Abstract

In general, a rare or orphan disease is any disease that affects a small percentage of the population. Since a majority of the known orphan diseases are genetic, they are present throughout the life of affected individuals. Many of the orphan diseases appear early in life and approximately 30 % of children with orphan diseases die before the age of 5. Further, a large majority of these diseases lack effective treatments. While most of genes and pathways underlying orphan diseases remain obscure, technological advances and innovative informatics approaches are expected to accelerate the rate of identification of underlying causal mutations and therapeutic discovery. Recent technological advances in DNA sequencing for instance, can aid in identifying genes associated with orphan diseases of previously unknown etiology using DNA from as few as 2–4 patients. Likewise, advanced computational statistical techniques permit integration and mining of omics data from orphan disease patients with high throughput “signatures” representing cellular responses to perturbing agents to identify therapeutic candidates for orphan diseases. In this chapter, we review some of the current bioinformatic analytical options available for orphan disease and drug research including computational approaches for candidate gene prioritization and high throughput compound screening to enable therapeutic discovery. We also discuss strategies and present examples and case studies of common drugs being repositioned for treatment of orphan diseases.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adie EA, Adams RR, Evans KL, Porteous DJ, Pickard BS. Speeding disease gene discovery by sequence based candidate prioritization. BMC Bioinf. 2005;6:55.

    Article  CAS  Google Scholar 

  • Adie EA, Adams RR, Evans KL, Porteous DJ, Pickard BS. SUSPECTS: enabling fast and effective prioritization of positional candidates. Bioinformatics. 2006;22:773–4.

    Article  CAS  PubMed  Google Scholar 

  • Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, Kondrashov AS, Sunyaev SR. A method and server for predicting damaging missense mutations. Nat Methods. 2010;7:248–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aerts S, Lambrechts D, Maity S, Van Loo P, Coessens B, De Smet F, Tranchevent LC, De Moor B, Marynen P, Hassan B, et al. Gene prioritization through genomic data fusion. Nat Biotechnol. 2006;24:537–44.

    Article  CAS  PubMed  Google Scholar 

  • Altman RB. PharmGKB: a logical home for knowledge relating genotype to drug response phenotype. Nat Genet. 2007;39:426.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Antonarakis SE, Beckmann JS. Mendelian disorders deserve more attention. Nat Rev. 2006;7:277–82.

    Article  CAS  Google Scholar 

  • ARIC. The Atherosclerosis Risk in Communities (ARIC) Study: design and objectives. The ARIC investigators. Am J Epidemiol. 1989;129:687–702.

    Article  Google Scholar 

  • Ashburn TT, Thor KB. Drug repositioning: identifying and developing new uses for existing drugs. Nat Rev Drug Discov. 2004;3:673–83.

    Article  CAS  PubMed  Google Scholar 

  • Ayme S. [Orphanet, an information site on rare diseases]. Soins. 2003;46–47.

    Google Scholar 

  • Bainbridge MN, Wiszniewski W, Murdock DR, Friedman J, Gonzaga-Jauregui C, Newsham I, Reid JG, Fink JK, Morgan MB, Gingras MC, et al. Whole-genome sequencing for optimized patient management. Sci Transl Med. 2011;3:87re83.

    Article  CAS  Google Scholar 

  • Barrett T, Troup DB, Wilhite SE, Ledoux P, Rudnev D, Evangelista C, Kim IF, Soboleva A, Tomashevsky M, Edgar R. NCBI GEO: mining tens of millions of expression profiles--database and tools update. Nucleic Acids Res. 2007;35:D760–5.

    Article  CAS  PubMed  Google Scholar 

  • Benitez BA, Alvarado D, Cai Y, Mayo K, Chakraverty S, Norton J, Morris JC, Sands MS, Goate A, Cruchaga C. Exome-sequencing confirms DNAJC5 mutations as cause of adult neuronal ceroid-lipofuscinosis. PLoS One. 2011;6:e26741.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bilguvar K, Ozturk AK, Louvi A, Kwan KY, Choi M, Tatli B, Yalnizoglu D, Tuysuz B, Caglayan AO, Gokben S, et al. Whole-exome sequencing identifies recessive WDR62 mutations in severe brain malformations. Nature. 2010;467:207–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boguski MS, Mandl KD, Sukhatme VP. Drug discovery. Repurposing with a difference. Science (New York, NY). 2009;324:1394–5.

    Article  CAS  Google Scholar 

  • Bolze A, Byun M, McDonald D, Morgan NV, Abhyankar A, Premkumar L, Puel A, Bacon CM, Rieux-Laucat F, Pang K, et al. Whole-exome-sequencing-based discovery of human FADD deficiency. Am J Hum Genet. 2010;87:873–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Botstein D, Risch N. Discovering genotypes underlying human phenotypes: past successes for mendelian disease, future approaches for complex disease. Nat Genet. 2003;33(Suppl):228–37.

    Article  CAS  PubMed  Google Scholar 

  • Brenk R, Schipani A, James D, Krasowski A, Gilbert IH, Frearson J, Wyatt PG. Lessons learnt from assembling screening libraries for drug discovery for neglected diseases. Chem Med Chem. 2008;3:435–44.

    Article  CAS  PubMed  Google Scholar 

  • Bromberg Y, Rost B. SNAP: predict effect of non-synonymous polymorphisms on function. Nucleic Acids Res. 2007;35:3823–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Byun M, Abhyankar A, Lelarge V, Plancoulaine S, Palanduz A, Telhan L, Boisson B, Picard C, Dewell S, Zhao C, et al. Whole-exome sequencing-based discovery of STIM1 deficiency in a child with fatal classic Kaposi sarcoma. J Exp Med. 2010;207:2307–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Calabrese R, Capriotti E, Fariselli P, Martelli PL, Casadio R. Functional annotations improve the predictive score of human disease-related mutations in proteins. Hum Mutat. 2009;30:1237–44.

    Article  CAS  PubMed  Google Scholar 

  • Campillos M, Kuhn M, Gavin AC, Jensen LJ, Bork P. Drug target identification using side-effect similarity. Science. 2008;321:263–6.

    Article  CAS  PubMed  Google Scholar 

  • Capriotti E, Calabrese R, Casadio R. Predicting the insurgence of human genetic diseases associated to single point protein mutations with support vector machines and evolutionary information. Bioinformatics. 2006;22:2729–34.

    Article  CAS  PubMed  Google Scholar 

  • Chen JY, Shen C, Sivachenko AY. Mining Alzheimer disease relevant proteins from integrated protein interactome data. Pac Symp Biocomput. 2006:367–378.

    Google Scholar 

  • Chen J, Xu H, Aronow BJ, Jegga AG. Improved human disease candidate gene prioritization using mouse phenotype. BMC Bioinf. 2007;8:392.

    Article  CAS  Google Scholar 

  • Chen J, Aronow BJ, Jegga AG. Disease candidate gene identification and prioritization using protein interaction networks. BMC Bioinf. 2009a;10:73.

    Article  CAS  Google Scholar 

  • Chen J, Bardes EE, Aronow BJ, Jegga AG. ToppGene Suite for gene list enrichment analysis and candidate gene prioritization. Nucleic Acids Res. 2009b;37:W305–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chiang AP, Butte AJ. Systematic evaluation of drug-disease relationships to identify leads for novel drug uses. Clin Pharmacol Ther. 2009;86:507–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi M, Scholl UI, Ji W, Liu T, Tikhonova IR, Zumbo P, Nayir A, Bakkaloglu A, Ozen S, Sanjad S, et al. Genetic diagnosis by whole exome capture and massively parallel DNA sequencing. Proc Natl Acad Sci U S A. 2009;106:19096–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chun S, Fay JC. Identification of deleterious mutations within three human genomes. Genome Res. 2009;19:1553–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cooper GM, Stone EA, Asimenos G, Program NCS, Green ED, Batzoglou S, Sidow A. Distribution and intensity of constraint in mammalian genomic sequence. Genome Res. 2005;15:901–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davydov EV, Goode DL, Sirota M, Cooper GM, Sidow A, Batzoglou S. Identifying a high fraction of the human genome to be under selective constraint using GERP++. PLoS Comput Biol. 2010;6:e1001025.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dong C, Wei P, Jian X, Gibbs R, Boerwinkle E, Wang K, Liu X. Comparison and integration of deleteriousness prediction methods for nonsynonymous SNVs in whole exome sequencing studies. Hum Mol Genet. 2015;24:2125–37.

    Article  CAS  PubMed  Google Scholar 

  • Erlich Y, Edvardson S, Hodges E, Zenvirt S, Thekkat P, Shaag A, Dor T, Hannon GJ, Elpeleg O. Exome sequencing and disease-network analysis of a single family implicate a mutation in KIF1A in hereditary spastic paraparesis. Genome Res. 2011;21:658–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feldman I, Rzhetsky A, Vitkup D. Network properties of genes harboring inherited disease mutations. Proc Natl Acad Sci U S A. 2008;105:4323–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Field MJ, Boat TF. Rare diseases and orphan products: accelerating research and development. In: MJ Field, TF Boat, editors. Rare diseases and orphan products: accelerating research and development. Committee on Accelerating Rare Diseases Research and Orphan Product Development, Institute of Medicine. 2010.

    Google Scholar 

  • Franke L, Bakel H, Fokkens L, de Jong ED, Egmont-Petersen M, Wijmenga C. Reconstruction of a functional human gene network, with an application for prioritizing positional candidate genes. Am J Hum Genet. 2006;78:1011–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Freudenberg J, Propping P. A similarity-based method for genome-wide prediction of disease-relevant human genes. Bioinformatics. 2002;18 Suppl 2:S110–5.

    Article  PubMed  Google Scholar 

  • Garber M, Guttman M, Clamp M, Zody MC, Friedman N, Xie X. Identifying novel constrained elements by exploiting biased substitution patterns. Bioinformatics. 2009;25:i54–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • George RA, Liu JY, Feng LL, Bryson-Richardson RJ, Fatkin D, Wouters MA. Analysis of protein sequence and interaction data for candidate disease gene prediction. Nucleic Acids Res. 2006;34:e130.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gilissen C, Arts HH, Hoischen A, Spruijt L, Mans DA, Arts P, van Lier B, Steehouwer M, van Reeuwijk J, Kant SG, et al. Exome sequencing identifies WDR35 variants involved in Sensenbrenner syndrome. Am J Hum Genet. 2010;87:418–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gilissen C, Hoischen A, Brunner HG, Veltman JA. Disease gene identification strategies for exome sequencing. Eur J Hum Genet. 2012. doi:10.1038/ejhg.2011.258. ejhg2011258 [pii].

    Google Scholar 

  • Goel R, Harsha HC, Pandey A, Prasad TS. Human protein reference database and human proteinpedia as resources for phosphoproteome analysis. Mol Biosyst. 2012;8:453–63.

    Article  CAS  PubMed  Google Scholar 

  • Goh KI, Cusick ME, Valle D, Childs B, Vidal M, Barabasi AL. The human disease network. Proc Natl Acad Sci U S A. 2007;104:8685–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gonzalez-Perez A, Lopez-Bigas N. Improving the assessment of the outcome of nonsynonymous SNVs with a consensus deleteriousness score. Condel Am J Hum Genet. 2011;88:440–9.

    Article  CAS  PubMed  Google Scholar 

  • Gotz A, Tyynismaa H, Euro L, Ellonen P, Hyotylainen T, Ojala T, Hamalainen RH, Tommiska J, Raivio T, Oresic M, et al. Exome sequencing identifies mitochondrial alanyl-tRNA synthetase mutations in infantile mitochondrial cardiomyopathy. Am J Hum Genet. 2011;88:635–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grau D, Serbedzija G. Innovative strategies for drug repurposing. Drug Discovery Dev. 2005.

    Google Scholar 

  • Hamosh A, Scott AF, Amberger J, Valle D, McKusick VA. Online Mendelian Inheritance in Man (OMIM). Hum Mutat. 2000;15:57–61.

    Article  CAS  PubMed  Google Scholar 

  • Hoischen A, van Bon BW, Gilissen C, Arts P, van Lier B, Steehouwer M, de Vries P, de Reuver R, Wieskamp N, Mortier G, et al. De novo mutations of SETBP1 cause Schinzel-Giedion syndrome. Nat Genet. 2010;42:483–5.

    Article  CAS  PubMed  Google Scholar 

  • Hristovski D, Peterlin B, Mitchell JA, Humphrey SM. Using literature-based discovery to identify disease candidate genes. Int J Med Inform. 2005;74:289–98.

    Article  PubMed  Google Scholar 

  • Iorio F, Bosotti R, Scacheri E, Belcastro V, Mithbaokar P, Ferriero R, Murino L, Tagliaferri R, Brunetti-Pierri N, Isacchi A, et al. Discovery of drug mode of action and drug repositioning from transcriptional responses. Proc Natl Acad Sci U S A. 2010a;107:14621–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iorio F, Isacchi A, di Bernardo D, Brunetti-Pierri N. Identification of small molecules enhancing autophagic function from drug network analysis. Autophagy. 2010b;6:1204–5.

    Article  CAS  PubMed  Google Scholar 

  • Isidor B, Lindenbaum P, Pichon O, Bezieau S, Dina C, Jacquemont S, Martin-Coignard D, Thauvin-Robinet C, Le Merrer M, Mandel JL, et al. Truncating mutations in the last exon of NOTCH2 cause a rare skeletal disorder with osteoporosis. Nat Genet. 2011;43:306–8.

    Article  CAS  PubMed  Google Scholar 

  • Jimenez-Sanchez G, Childs B, Valle D. Human disease genes. Nature. 2001;409:853–5.

    Article  CAS  PubMed  Google Scholar 

  • Johnson JO, Mandrioli J, Benatar M, Abramzon Y, Van Deerlin VM, Trojanowski JQ, Gibbs JR, Brunetti M, Gronka S, Wuu J, et al. Exome sequencing reveals VCP mutations as a cause of familial ALS. Neuron. 2010;68:857–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Junker BH, Koschutzki D, Schreiber F. Exploration of biological network centralities with CentiBiN. BMC Bioinf. 2006;7:219.

    Article  Google Scholar 

  • Kaimal V, Sardana D, Bardes EE, Gudivada RC, Chen J, Jegga AG. Integrative systems biology approaches to identify and prioritize disease and drug candidate genes. Methods Mol Biol. 2011;700:241–59.

    Article  CAS  PubMed  Google Scholar 

  • Kanehisa M, Goto S, Hattori M, Aoki-Kinoshita KF, Itoh M, Kawashima S, Katayama T, Araki M, Hirakawa M. From genomics to chemical genomics: new developments in KEGG. Nucleic Acids Res. 2006;34:D354–7.

    Article  CAS  PubMed  Google Scholar 

  • Kann MG. Protein interactions and disease: computational approaches to uncover the etiology of diseases. Brief Bioinform. 2007;8:333–46.

    Article  CAS  PubMed  Google Scholar 

  • Keiser MJ, Setola V, Irwin JJ, Laggner C, Abbas AI, Hufeisen SJ, Jensen NH, Kuijer MB, Matos RC, Tran TB, et al. Predicting new molecular targets for known drugs. Nature. 2009;462:175–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • King MC, Wilson AC. Evolution at two levels in humans and chimpanzees. Science (New York, NY). 1975;188:107–16.

    Article  CAS  Google Scholar 

  • Kingsmore SF, Saunders CJ. Deep sequencing of patient genomes for disease diagnosis: when will it become routine? Sci Transl Med. 2011;3:87ps23.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kinnings SL, Liu N, Buchmeier N, Tonge PJ, Xie L, Bourne PE. Drug discovery using chemical systems biology: repositioning the safe medicine Comtan to treat multi-drug and extensively drug resistant tuberculosis. PLoS Comput Biol. 2009;5:e1000423.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kircher M, Witten DM, Jain P, O’Roak BJ, Cooper GM, Shendure J. A general framework for estimating the relative pathogenicity of human genetic variants. Nat Genet. 2014;46:310–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kohler S, Bauer S, Horn D, Robinson PN. Walking the interactome for prioritization of candidate disease genes. Am J Hum Genet. 2008;82:949–58.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Korstanje R, Paigen B. From QTL to gene: the harvest begins. Nat Genet. 2002;31:235–6.

    Article  CAS  PubMed  Google Scholar 

  • Krawitz PM, Schweiger MR, Rodelsperger C, Marcelis C, Kolsch U, Meisel C, Stephani F, Kinoshita T, Murakami Y, Bauer S, et al. Identity-by-descent filtering of exome sequence data identifies PIGV mutations in hyperphosphatasia mental retardation syndrome. Nat Genet. 2010;42:827–9.

    Article  CAS  PubMed  Google Scholar 

  • Kuhn M, Szklarczyk D, Franceschini A, von Mering C, Jensen LJ, Bork P. STITCH 3: zooming in on protein-chemical interactions. Nucleic Acids Res. 2012;40:D876–80.

    Article  CAS  PubMed  Google Scholar 

  • Kumar P, Henikoff S, Ng PC. Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat Protoc. 2009;4:1073–81.

    Article  CAS  PubMed  Google Scholar 

  • Lalonde E, Albrecht S, Ha KC, Jacob K, Bolduc N, Polychronakos C, Dechelotte P, Majewski J, Jabado N. Unexpected allelic heterogeneity and spectrum of mutations in Fowler syndrome revealed by next-generation exome sequencing. Hum Mutat. 2010;31:918–23.

    Article  CAS  PubMed  Google Scholar 

  • Lamb J. The connectivity map: a new tool for biomedical research. Nat Rev Cancer. 2007;7:54–60.

    Article  CAS  PubMed  Google Scholar 

  • Lamb J, Crawford ED, Peck D, Modell JW, Blat IC, Wrobel MJ, Lerner J, Brunet JP, Subramanian A, Ross KN, et al. The connectivity map: using gene-expression signatures to connect small molecules, genes, and disease. Science (New York, NY). 2006;313:1929–35.

    Article  CAS  Google Scholar 

  • Li Y, Agarwal P. A pathway-based view of human diseases and disease relationships. PLoS One. 2009;4:e4346.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li B, Krishnan VG, Mort ME, Xin F, Kamati KK, Cooper DN, Mooney SD, Radivojac P. Automated inference of molecular mechanisms of disease from amino acid substitutions. Bioinformatics. 2009;25:2744–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li MX, Gui HS, Kwan JS, Bao SY, Sham PC. A comprehensive framework for prioritizing variants in exome sequencing studies of Mendelian diseases. Nucleic Acids Res. 2012;40:e53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin Z, Chen Q, Lee M, Cao X, Zhang J, Ma D, Chen L, Hu X, Wang H, Wang X, et al. Exome sequencing reveals mutations in TRPV3 as a cause of Olmsted syndrome. Am J Hum Genet. 2012;90:558–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Linghu B, Snitkin ES, Hu Z, Xia Y, Delisi C. Genome-wide prioritization of disease genes and identification of disease-disease associations from an integrated human functional linkage network. Genome Biol. 2009;10:R91.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lopez-Bigas N, Ouzounis CA. Genome-wide identification of genes likely to be involved in human genetic disease. Nucleic Acids Res. 2004;32:3108–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mackay TF. Quantitative trait loci in Drosophila. Nat Rev. 2001;2:11–20.

    Article  CAS  Google Scholar 

  • Majewski J, Schwartzentruber JA, Caqueret A, Patry L, Marcadier J, Fryns JP, Boycott KM, Ste-Marie LG, McKiernan FE, Marik I, et al. Mutations in NOTCH2 in families with Hajdu-Cheney syndrome. Hum Mutat. 2011;32:1114–7.

    Article  CAS  PubMed  Google Scholar 

  • Marchegiani S, Davis T, Tessadori F, van Haaften G, Brancati F, Hoischen A, Huang H, Valkanas E, Pusey B, Schanze D, et al. Recurrent mutations in the basic domain of TWIST2 cause Ablepharon Macrostomia and barber-say syndromes. Am J Hum Genet. 2015;97:99–110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Masseroli M, Martucci D, Pinciroli F. GFINDer: genome Function INtegrated Discoverer through dynamic annotation, statistical analysis, and mining. Nucleic Acids Res. 2004;32:W293–300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Masseroli M, Galati O, Pinciroli F. GFINDer: genetic disease and phenotype location statistical analysis and mining of dynamically annotated gene lists. Nucleic Acids Res. 2005;33:W717–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meester JA, Southgate L, Stittrich AB, Venselaar H, Beekmans SJ, den Hollander N, Bijlsma EK, Helderman-van den Enden A, Verheij JB, Glusman G et al. Heterozygous loss-of-function mutations in DLL4 cause Adams-Oliver syndrome. Am J Hum Genet. 2015;97:475–82.

    Google Scholar 

  • Morrison AC, Voorman A, Johnson AD, Liu X, Yu J, Li A, Muzny D, Yu F, Rice K, Zhu C, et al. Whole-genome sequence-based analysis of high-density lipoprotein cholesterol. Nat Genet. 2013;45:899–901.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Musunuru K, Pirruccello JP, Do R, Peloso GM, Guiducci C, Sougnez C, Garimella KV, Fisher S, Abreu J, Barry AJ, et al. Exome sequencing, ANGPTL3 mutations, and familial combined hypolipidemia. N Engl J Med. 2010;363:2220–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ng SB, Bigham AW, Buckingham KJ, Hannibal MC, McMillin MJ, Gildersleeve HI, Beck AE, Tabor HK, Cooper GM, Mefford HC, et al. Exome sequencing identifies MLL2 mutations as a cause of Kabuki syndrome. Nat Genet. 2010;42:790–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Connor KA, Roth BL. Finding new tricks for old drugs: an efficient route for public-sector drug discovery. Nat Rev Drug Discov. 2005;4:1005–14.

    Article  PubMed  CAS  Google Scholar 

  • O’Sullivan J, Bitu CC, Daly SB, Urquhart JE, Barron MJ, Bhaskar SS, Martelli-Junior H, dos Santos Neto PE, Mansilla MA, Murray JC, et al. Whole-Exome sequencing identifies FAM20A mutations as a cause of amelogenesis imperfecta and gingival hyperplasia syndrome. Am J Hum Genet. 2011;88:616–20.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • ODA. The Orphan Drug Act – implementation and impact. Department of Health and Human Services, Office of Inspector Journal. 2001.

    Google Scholar 

  • Olatubosun A, Valiaho J, Harkonen J, Thusberg J, Vihinen M. PON-P: integrated predictor for pathogenicity of missense variants. Hum Mutat. 2012;33:1166–74.

    Article  CAS  PubMed  Google Scholar 

  • Ortutay C, Vihinen M. Identification of candidate disease genes by integrating Gene Ontologies and protein-interaction networks: case study of primary immunodeficiencies. Nucleic Acids Res. 2009;37:622–8.

    Article  CAS  PubMed  Google Scholar 

  • Padhy BM, Gupta YK. Drug repositioning: re-investigating existing drugs for new therapeutic indications. J Postgrad Med. 2011;57:153–60.

    Article  CAS  PubMed  Google Scholar 

  • Perez-Iratxeta C, Bork P, Andrade MA. Association of genes to genetically inherited diseases using data mining. Nat Genet. 2002;31:316–9.

    CAS  PubMed  Google Scholar 

  • Perez-Iratxeta C, Wjst M, Bork P, Andrade MA. G2D: a tool for mining genes associated with disease. BMC Genet. 2005;6:45.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pierce SB, Walsh T, Chisholm KM, Lee MK, Thornton AM, Fiumara A, Opitz JM, Levy-Lahad E, Klevit RE, King MC. Mutations in the DBP-deficiency protein HSD17B4 cause ovarian dysgenesis, hearing loss, and ataxia of Perrault Syndrome. Am J Hum Genet. 2010;87:282–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piro RM, Di Cunto F. Computational approaches to disease-gene prediction: rationale, classification and successes. FEBS J. 2012;279:678–96.

    Article  CAS  PubMed  Google Scholar 

  • Puente XS, Quesada V, Osorio FG, Cabanillas R, Cadinanos J, Fraile JM, Ordonez GR, Puente DA, Gutierrez-Fernandez A, Fanjul-Fernandez M, et al. Exome sequencing and functional analysis identifies BANF1 mutation as the cause of a hereditary progeroid syndrome. Am J Hum Genet. 2011;88:650–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pujol A, Mosca R, Farres J, Aloy P. Unveiling the role of network and systems biology in drug discovery. Trends Pharmacol Sci. 2010;31:115–23.

    Article  CAS  PubMed  Google Scholar 

  • Rados C. Orphan products: hope for people with rare diseases. FDA Consum. 2003;37:10–5.

    PubMed  Google Scholar 

  • Ratbi I, Falkenberg KD, Sommen M, Al-Sheqaih N, Guaoua S, Vandeweyer G, Urquhart JE, Chandler KE, Williams SG, Roberts NA, et al. Heimler syndrome is caused by hypomorphic mutations in the peroxisome-biogenesis genes PEX1 and PEX6. Am J Hum Genet. 2015;97:535–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reva B, Antipin Y, Sander C. Predicting the functional impact of protein mutations: application to cancer genomics. Nucleic Acids Res. 2011;39:e118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rossi S, Masotti D, Nardini C, Bonora E, Romeo G, Macii E, Benini L, Volinia S. TOM: a web-based integrated approach for identification of candidate disease genes. Nucleic Acids Res. 2006;34:W285–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Russ AP, Lampel S. The druggable genome: an update. Drug Discov Today. 2005;10:1607–10.

    Article  PubMed  Google Scholar 

  • Sardana D, Zhu C, Zhang M, Gudivada RC, Yang L, Jegga AG. Drug repositioning for orphan diseases. Brief Bioinform. 2011;12:346–56.

    Article  CAS  PubMed  Google Scholar 

  • Sasidharan Nair P, Vihinen M. VariBench: a benchmark database for variations. Hum Mutat. 2013;34:42–9.

    Article  CAS  PubMed  Google Scholar 

  • Schwarz JM, Rodelsperger C, Schuelke M, Seelow D. MutationTaster evaluates disease-causing potential of sequence alterations. Nat Methods. 2010;7:575–6.

    Article  CAS  PubMed  Google Scholar 

  • Shihab HA, Gough J, Cooper DN, Day IN, Gaunt TR. Predicting the functional consequences of cancer-associated amino acid substitutions. Bioinformatics. 2013;29:1504–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simpson MA, Irving MD, Asilmaz E, Gray MJ, Dafou D, Elmslie FV, Mansour S, Holder SE, Brain CE, Burton BK, et al. Mutations in NOTCH2 cause Hajdu-Cheney syndrome, a disorder of severe and progressive bone loss. Nat Genet. 2011;43:303–5.

    Article  CAS  PubMed  Google Scholar 

  • Smith NG, Eyre-Walker A. Human disease genes: patterns and predictions. Gene. 2003;318:169–75.

    Article  CAS  PubMed  Google Scholar 

  • Suthram S, Dudley JT, Chiang AP, Chen R, Hastie TJ, Butte AJ. Network-based elucidation of human disease similarities reveals common functional modules enriched for pluripotent drug targets. PLoS Comput Biol. 2010;6:e1000662.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Thomas PD, Campbell MJ, Kejariwal A, Mi H, Karlak B, Daverman R, Diemer K, Muruganujan A, Narechania A. PANTHER: a library of protein families and subfamilies indexed by function. Genome Res. 2003;13:2129–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thornblad TA, Elliott KS, Jowett J, Visscher PM. Prioritization of positional candidate genes using multiple web-based software tools. Twin Res Hum Genet. 2007;10:861–70.

    Article  PubMed  Google Scholar 

  • Tiffin N, Kelso JF, Powell AR, Pan H, Bajic VB, Hide WA. Integration of text- and data-mining using ontologies successfully selects disease gene candidates. Nucleic Acids Res. 2005;33:1544–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tiffin N, Adie E, Turner F, Brunner HG, van Driel MA, Oti M, Lopez-Bigas N, Ouzounis C, Perez-Iratxeta C, Andrade-Navarro MA, et al. Computational disease gene identification: a concert of methods prioritizes type 2 diabetes and obesity candidate genes. Nucleic Acids Res. 2006;34:3067–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tranchevent LC, Barriot R, Yu S, Van Vooren S, Van Loo P, Coessens B, De Moor B, Aerts S, Moreau Y. ENDEAVOUR update: a web resource for gene prioritization in multiple species. Nucleic Acids Res. 2008;36:W377–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turner FS, Clutterbuck DR, Semple CA. POCUS: mining genomic sequence annotation to predict disease genes. Genome Biol. 2003;4:R75.

    Article  PubMed  PubMed Central  Google Scholar 

  • UniProt C. Activities at the Universal Protein Resource (UniProt). Nucleic Acids Res. 2014;42:D191–8.

    Article  CAS  Google Scholar 

  • UniProt C. UniProt: a hub for protein information. Nucleic Acids Res. 2015;43:D204–12.

    Article  Google Scholar 

  • United States Food and Drug A. The Orphan Drug regulations. 1992.

    Google Scholar 

  • van Driel MA, Cuelenaere K, Kemmeren PP, Leunissen JA, Brunner HG. A new web-based data mining tool for the identification of candidate genes for human genetic disorders. Eur J Hum Genet. 2003;11:57–63.

    Article  PubMed  CAS  Google Scholar 

  • van Driel MA, Cuelenaere K, Kemmeren PP, Leunissen JA, Brunner HG, Vriend G. GeneSeeker: extraction and integration of human disease-related information from web-based genetic databases. Nucleic Acids Res. 2005;33:W758–61.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • van Driel MA, Bruggeman J, Vriend G, Brunner HG, Leunissen JA. A text-mining analysis of the human phenome. Eur J Hum Genet. 2006;14:535–42.

    Article  PubMed  CAS  Google Scholar 

  • Vissers LE, Lausch E, Unger S, Campos-Xavier AB, Gilissen C, Rossi A, Del Rosario M, Venselaar H, Knoll U, Nampoothiri S, et al. Chondrodysplasia and abnormal joint development associated with mutations in IMPAD1, encoding the Golgi-resident nucleotide phosphatase, gPAPP. Am J Hum Genet. 2011;88:608–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang JL, Yang X, Xia K, Hu ZM, Weng L, Jin X, Jiang H, Zhang P, Shen L, Guo JF, et al. TGM6 identified as a novel causative gene of spinocerebellar ataxias using exome sequencing. Brain. 2010;133:3510–8.

    Article  PubMed  Google Scholar 

  • Wastfelt M, Fadeel B, Henter JI. A journey of hope: lessons learned from studies on rare diseases and orphan drugs. J Intern Med. 2006;260:1–10.

    Article  CAS  PubMed  Google Scholar 

  • Wishart DS, Knox C, Guo AC, Shrivastava S, Hassanali M, Stothard P, Chang Z, Woolsey J. DrugBank: a comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Res. 2006;34:D668–72.

    Article  CAS  PubMed  Google Scholar 

  • Wishart DS, Knox C, Guo AC, Cheng D, Shrivastava S, Tzur D, Gautam B, Hassanali M. DrugBank: a knowledgebase for drugs, drug actions and drug targets. Nucleic Acids Res. 2008;36:D901–6.

    Article  CAS  PubMed  Google Scholar 

  • Wu X, Jiang R, Zhang MQ, Li S. Network-based global inference of human disease genes. Mol Syst Biol. 2008;4:189.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wu C, Gudivada RC, Aronow BJ, Jegga AG. Computational drug repositioning through heterogeneous network clustering. BMC Syst Biol. 2013;7 Suppl 5:S6.

    Article  Google Scholar 

  • Xu K, Cote TR. Database identifies FDA-approved drugs with potential to be repurposed for treatment of orphan diseases. Brief Bioinform. 2011;12:341–5.

    Article  CAS  PubMed  Google Scholar 

  • Xu J, Li Y. Discovering disease-genes by topological features in human protein-protein interaction network. Bioinformatics. 2006;22:2800–5.

    Article  CAS  PubMed  Google Scholar 

  • Zhang M, Zhu C, Jacomy A, Lu LJ, Jegga AG. The orphan disease networks. Am J Hum Genet. 2011;88:755–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu M, Zhao S. Candidate gene identification approach: progress and challenges. Int J Biol Sci. 2007;3:420–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu C, Kushwaha A, Berman K, Jegga AG. A vertex similarity-based framework to discover and rank orphan disease-related genes. BMC Syst Biol. 2012a;6 Suppl 3:S8.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhu F, Shi Z, Qin C, Tao L, Liu X, Xu F, Zhang L, Song Y, Zhang J, Han B, et al. Therapeutic target database update 2012: a resource for facilitating target-oriented drug discovery. Nucleic Acids Res. 2012b;40:D1128–36.

    Article  CAS  PubMed  Google Scholar 

  • Zuchner S, Dallman J, Wen R, Beecham G, Naj A, Farooq A, Kohli MA, Whitehead PL, Hulme W, Konidari I, et al. Whole-exome sequencing links a variant in DHDDS to retinitis pigmentosa. Am J Hum Genet. 2011;88:201–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anil G. Jegga DVM, MS .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Jegga, A.G. (2016). Bioinformatics and Orphan Diseases. In: Hutton, J. (eds) Pediatric Biomedical Informatics. Translational Bioinformatics, vol 10. Springer, Singapore. https://doi.org/10.1007/978-981-10-1104-7_16

Download citation

Publish with us

Policies and ethics