Skip to main content

Functional Validation of Demagnetizing Factor of Quasi-Solid and Solid Magnets (Phenomenological Approach)

  • Conference paper
  • First Online:
Book cover Transactions on Engineering Technologies

Abstract

We managed to get the following results: we have confirmed the commonality of the functional view of the demagnetizing factor for quasi-solid and solid ferromagnetic cylindrical samples dependence on their relative dimension; the view is exponential with the radical of the relative dimension being the argument. Also the second argument is in addition revealed is a weak power function of magnetic permeability of substance of a magnetic. Expanded functional dependence for the demagnetizing factor which it is possible to use at the solution of a wide range of scientific and practical tasks is received. It is noted that for rather narrow range of values of magnetic permeability, for example, characterizing quasisolid “substance” of a matrix magnetic, the functional coefficient degenerates in a constant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Smistrup K, Hansen O, Bruus H, Hansen M (2005) Magnetic separation in microfluidic systems using microfabricated electromagnets—experiments and simulations. J Magn Magn Mater 293:597–604

    Article  Google Scholar 

  2. Presuel-Moreno FJ, Sagues AA (2009) Bulk magnetic susceptibility measurements for determination of fly ash presence in concrete. Cem Concr Res 39(2):95–101

    Google Scholar 

  3. Anhalt M, Weidenfeller B, Mattei JL (2008) Inner demagnetization factor in polymer-bonded soft magnetic composites. J Magn Magn Mater 320:844–848

    Article  Google Scholar 

  4. Sandulyak A, Sandulyak D, Ershova V, Kiselev D, Sandulyak A (2015) Finding out the commonalities in functional expressions for demagnetizing factor of quasi-solid and solid magnets. Lecture notes in engineering and computer science. In: Proceedings of the world congress on engineering 2015, WCE 2015, pp 1183–1185. London, UK, 1–3 July 2015

    Google Scholar 

  5. Nandy K, Chaudhuri S, Ganguly R, Puri IK (2008) Analytical model for the magnetophoretic capture of magnetic microspheres in microfluidic devices. J Magn Magn Mater 320:1398–1405

    Article  Google Scholar 

  6. Goleman R (2004) Macroscopic model of particles’ capture by the elliptic cross-section collector in magnetic separator. J Magn Magn Mater 272–276:2348–2349

    Article  Google Scholar 

  7. Chen D-X, Brug JA, Goldfarb RB (1991) Demagnetizing factors for cylinders. IEEE Trans Magn 27(4):3601–3619

    Article  Google Scholar 

  8. Chen D-X, Pardo E, Sanchez A (2006) Fluxmetric and magnetometric demagnetizing factors for cylinders. J Magn Magn Mater 306:135–146

    Article  Google Scholar 

  9. Bose S, Datta A, Ganguly R, Banerjee M (2013) Lagrangian magnetic particle tracking through stenosed artery under pulsatile flow condition. J Nanotechnol Eng Med 4:031006-1–031006-10

    Google Scholar 

  10. Sandulyak AA, Ershova VA, Ershov DV, Sandulyak AV (2010) On the properties of short granular magnets with unordered granule chains: a field between the granules. Solid State Phys 52(10):1967–1974

    Article  Google Scholar 

  11. Sandulyak AA, Sandulyak AV (2006) Prospects of employing magnetic filter-separators for purifying ceramic suspensions. Glass Ceram 11:34–37

    Google Scholar 

  12. Newns A, Pascoe RD (2002) Influence of path length and slurry velocity on the removal of iron from kaolin using a high gradient magnetic separator. Miner Eng 15:465–467

    Article  Google Scholar 

  13. Rayner JG, Napier-Munn TJ (2003) A mathematical model of concentrate solids content for the wet drum magnetic separator. Int J Miner Process 70:53–65

    Article  Google Scholar 

  14. Norrgran D (2008) Magnetic filtration: producing fine high-purity feedstocks. Filtr Sep 45(6):15–17

    Article  Google Scholar 

  15. Zezulka V, Straka P, Mucha P (2004) A magnetic filter with permanent magnets on the basis of rare earth. J Magn Magn Mater 268:219–226

    Article  Google Scholar 

  16. Furlani EP, Sahoo Y, Ng KC, Wortman JC, Monk TE (2007) A model for predicting magnetic particle capture in a microfluidic bioseparator. Biomed Microdevices 9(4):451–463

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna A. Sandulyak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this paper

Cite this paper

Sandulyak, A.A., Sandulyak, D.A., Ershova, V.A., Polismakova, M.N., Sandulyak, A.V. (2016). Functional Validation of Demagnetizing Factor of Quasi-Solid and Solid Magnets (Phenomenological Approach). In: Ao, Si., Yang, GC., Gelman, L. (eds) Transactions on Engineering Technologies. Springer, Singapore. https://doi.org/10.1007/978-981-10-1088-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-1088-0_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-1087-3

  • Online ISBN: 978-981-10-1088-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics