Skip to main content

Tetrisation of Triangular Meshes and Its Application in Shape Blending

  • Conference paper
  • First Online:
Mathematical Progress in Expressive Image Synthesis III

Part of the book series: Mathematics for Industry ((MFI,volume 24))

Abstract

The As-Rigid-As-Possible (ARAP) shape deformation framework is a versatile technique for morphing, surface modelling, and mesh editing. We discuss an improvement of the ARAP framework in a few aspects: 1. Given a triangular mesh in 3D space, we introduce a method to associate a tetrahedral structure, which encodes the geometry of the original mesh. 2. We use a Lie algebra based method to interpolate local transformation, which provides better handling of rotation with large angle. 3. We propose a new error function to compile local transformations into a global piecewise linear map, which is rotation invariant and easy to minimise. We implemented a shape blender based on our algorithm and its MIT licensed source code is available online.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The term involving I is for normalisation and it enforces \(\mathrm {Blend}_P( 0,\ldots ,0, \hat{A}_{1i}, \hat{A}_{2i}, \ldots , \hat{A}_{mi} )=I\).

References

  1. M. Alexa, D. Cohen-Or, D. Levin, As-Rigid-As-Possible Shape Interpolation. Proc. ACM SIGGRAPH 2000, 157–164 (2000)

    Google Scholar 

  2. W. Baxter, P. Barla, K. Anjyo, N-way morphing for 2D animation. Comput. Anim. Virtual Worlds 20(2–3), 79–87 (2009)

    Article  Google Scholar 

  3. M. Botsch, O. Sorkine, On linear variational surface deformation methods. IEEE Trans. Vis. Comput. Gr. 14(1), 213–230 (2008)

    Article  Google Scholar 

  4. M.S. Floater, Mean value coordinates. Comput. Aided Geom. Des. 20(1), 19–27 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. N. Higham, Computing the polar decomposition-with applications. SIAM J. Sci. Stat. Comput. 7(4), 1160–1174 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  6. S. Kaji, An N-way morphing plugin for Autodesk Maya, https://github.com/shizuo-kaji/NWayBlenderMaya

  7. S. Kaji, G. Liu, Probe-type deformers, in Mathematical Progress in Expressive Image Synthesis II (Springer, Japan, 2015), pp. 63–77

    Google Scholar 

  8. S. Kaji, H. Ochiai, A concise parametrisation of affine transformation, preprint arXiv:1507.05290

  9. L. Kavan, S. Collins, J. Žára, C. O’Sullivan, Geometric skinning with approximate dual quaternion blending. ACM Trans. Gr. 27(4), 105:1–105:23 (2008)

    Google Scholar 

  10. Y. Lipman, O. Sorkine, D. Levin, D. Cohen-Or, Linear rotation-invariant coordinates for meshes. ACM Trans. Gr. 24(3), 479–487 (2005)

    Article  Google Scholar 

  11. K. Shoemake, Animating rotation with quaternion curves. ACM SIGGRAPH (1985), pp. 245–254

    Google Scholar 

  12. K. Shoemake, T. Duff, Matrix animation and polar decomposition, in Proceedings of Graphics interface ’92, ed. by K.S. Booth, A. Fournier (Morgan Kaufmann Publishers Inc., San Francisco, 1992), pp. 258–264

    Google Scholar 

  13. H. Si, TetGen, a Delaunay-based quality tetrahedral mesh generator. ACM Trans. Math. Softw. 41(2), 11:1–11:36 (2015)

    Google Scholar 

  14. O. Sorkine, M. Alexa, As-rigid-as-possible surface modeling, in Proceedings of Eurographics SGP ’07, Eurographics Association, Aire-la-Ville, Switzerland (2007), pp. 109–116

    Google Scholar 

  15. R.W. Sumner, J. Popović, Deformation transfer for triangle meshes. ACM Trans. Gr. 23(3), 399–405 (2004)

    Article  Google Scholar 

  16. R.W. Sumner, M. Zwicker, C. Gotsman, J. Popović, Mesh-based inverse kinematics. ACM Trans. Gr. 24(3), 488–495 (2005)

    Article  Google Scholar 

  17. Y. Yu, K. Zhou, D. Xu, X. Shi, H. Bao, B. Guo, H.-Y. Shum, Mesh editing with poisson-based gradient field manipulation. ACM Trans. Gr. 23(3), 644–651 (2004)

    Article  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the Core Research for Evolutional Science and Technology (CREST) Program titled “Mathematics for Computer Graphics” of the Japan Science and Technology Agency (JST), by KAKENHI Grant-in-Aid for Young Scientists (B) 26800043, and by JSPS Postdoctoral Fellowships for Research Abroad.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shizuo Kaji .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this paper

Cite this paper

Kaji, S. (2016). Tetrisation of Triangular Meshes and Its Application in Shape Blending. In: Dobashi, Y., Ochiai, H. (eds) Mathematical Progress in Expressive Image Synthesis III. Mathematics for Industry, vol 24. Springer, Singapore. https://doi.org/10.1007/978-981-10-1076-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-1076-7_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-1075-0

  • Online ISBN: 978-981-10-1076-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics