Skip to main content

Paleoproterozoic Copper System in the Zhongtiaoshan Region, Southern Margin of the North China Craton: Ore Geology, Fluid Inclusion, and Isotopic Investigation

  • Chapter
  • First Online:
Main Tectonic Events and Metallogeny of the North China Craton

Part of the book series: Springer Geology ((SPRINGERGEOL))

  • 2053 Accesses

Abstract

The Zhongtiaoshan region is located in the south segment of the North China Craton and hosts a number of significant Paleoproterozoic copper deposits with a total metal endowment of approximately 400 Mt of metal Cu. Among these Cu deposits, the Tongkuangyu and Hujiayu Cu deposits constitute approximately 80 % of the total reserves. The Tongkuangyu Cu deposit, the largest copper deposit in the Zhongtiaoshan region, is hosted in quartz-monzonite porphyry (~2.1 Ga) and its wall rocks of the meta-quartz crystal tuffs of the Jiangxian Group. In contrast, the Hujiayu Cu deposit is hosted within reduced marine sedimentary sequence of the mid-Paleoproterozoic Zhongtiao Group. For decades, as these ancient deposits underwent subsequent metamorphism, the metallogenesis models of the two deposits are highly controversial. More importantly, the nature and origins of the ore-forming fluids and the mechanism of multistage fluid mineralization are still unclear. Summarizing previous researches, we systematically investigate the ore geology, fluid inclusions, and stable isotopes of the typical Tongkuangyu and Hujiayu Cu deposits. The main conclusions are as follows: (1) The oxygen fugacity of hydrothermal system of the Tongkuangyu Cu deposit fluctuates near the Magnetite–Hematite (MH) buffer line, corresponding to the redox state of typical oxidized porphyry copper deposits. The main ore-forming fluids of this deposit consist of magmatic–hydrothermal fluids with middle-high temperature and high salinity. Orebody spatial structure, mineralization types, and alteration features support a porphyry copper deposit model. The formation age of the quartz-monzonite porphyry is consistent with Cu mineralization. We propose that the Tongkuangyu Cu deposit is a porphyry copper deposit formed in an arc-related extension environment. (2) Fluid inclusion studies on the Hujiayu Cu deposit show that the ore-forming fluids of the early mineralization stage are mainly characterized by high salinity and moderate temperature basinal brines. The ore-forming fluids of the late mineralization stage are characterized by CO2-rich and high salinity and high temperature metamorphic hydrothermal solutions, which obviously experience phase separation. Early stage mineralization of the Hujiayu Cu deposit may occur via interaction of oxidized Cu-bearing brines from the underlying red beds [formed after the Great Oxidation Event (GOE)] with the upper reducing carbonaceous shales. In contrast, late stage mineralization at the Hujiayu deposit is likely related to CO2 escaping from metamorphic hydrothermal solutions. The Hujiayu copper deposit is a typical sediment-hosted stratiform copper deposit. The “Hu-Bi” type copper deposits can be comparable with Central Africa Copper Belt.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Audétat, A., Günther, D., & Heinrich, C. A. (1998). Formation of a magmatic-hydrothermal ore deposit: Insights with LA-ICP-MS analysis of fluid inclusions. Science, 279, 2091–2094.

    Article  Google Scholar 

  • Bai, J. (1997). Precambrian crustal evolution of the Zhongtiao Mountains. Earth Science Frontiers, 4, 281–289. (in Chinese).

    Google Scholar 

  • Bell, K., & Simonetti, A. (2009). Source of parental melts to carbonatites—critical isotopic constraints. Mineralogy & Petrology, 98, 77–89.

    Google Scholar 

  • Bodnar, R., Lecumberi-Sanches, P., Moncada, D., & Steele-MacInnis, M. (2014). Fluid inclusions in hydrothermal ore deposits. In Treatise on geochemistry (2nd ed., pp. 119–142).

    Google Scholar 

  • Brown, A. C. (1992). Sediment-hosted stratiform copper deposits. Geoscience Canada, 19.

    Google Scholar 

  • Brown, A. C. (1997). World-class sediment-hosted stratiform copper deposits: Characteristics, genetic concepts and metallotects. Australian Journal of Earth Sciences, 44, 317–328.

    Article  Google Scholar 

  • Cen, B. X., & Yang, Y. (1993). Analysis on time structure and regularity of mineralization evolution of Hu-Bi type copper deposits in Zhongtiao Mountains, Shanxi. Earth Science—Journal of China University of Geosciences, 18, 209–210. (in Chinese).

    Google Scholar 

  • Chen, W. M., & Li, S. P. (1998). Rhenium-Osmium isotopic ages of sulfides from the Tongkuangyu porphyry copper deposit in the Zhongtiao Mountain. Mineral Deposits, 17, 224–228. (in Chinese).

    Google Scholar 

  • Chen, W. M., Zhang, C. X., Lu, J. R., Cao, Y. J., Li, S. P., Cui, W. B., et al. (1998). Polygenetic mineralization of the early Proterozoic Tongkuangyu Metaporphyry copper deposit in the Zhongtiao Mountains, Shanxi Province. Acta Geologica Sinica, 72, 154–168. (in Chinese).

    Google Scholar 

  • Chi, G. X., & Ni, P. (2007). Equations for calculation of NaCl/(Nacl + CaCl2) ratios and salinities from hydrohalite-melting and ice-melting temperatures in the H2O-NaCl-CaCl2 system. Acta Petrologica Sinica, 23, 33–37.

    Google Scholar 

  • Clayton, R. N., Mayeda, T. K., & O’Neil, J. R. (1972). Oxygen isotope exchange between quartz and water. Journal of Geophysical Research Atmospheres, 77, 3057–3067.

    Article  Google Scholar 

  • Compilation Group of the Geology of Copper Deposits of the Zhongtiao Mountains. (1978). Geology of copper deposits in the Zhongtiao Mountains (pp. 25–86). Beijing: Geological Publishing House (in Chinese).

    Google Scholar 

  • Coplen, T. B., Kendall, C., & Hopple, J. (1983). Comparison of stable isotope reference samples. Nature, 302, 236–238.

    Article  Google Scholar 

  • Crerar, D. A., & Barnes, H. (1976). Ore solution chemistry; V, Solubilities of chalcopyrite and chalcocite assemblages in hydrothermal solution at 200 degrees to 350 degrees C. Economic Geology, 71, 772–794.

    Article  Google Scholar 

  • Drummond, S., & Ohmoto, H. (1985). Chemical evolution and mineral deposition in boiling hydrothermal systems. Economic Geology, 80, 126–147.

    Article  Google Scholar 

  • Du, L. L., Yang, C. H., Guo, J. H., Wang, W., Ren, L. D., Wan, Y. S., et al. (2010). The age of the base of the Paleoproterozoic Hutuo Group in the Wutai Mountains area, North China Craton: SHRIMP zircon U-Pb dating of basaltic andesite. Chinese Science Bulletin, 55, 1782–1789.

    Article  Google Scholar 

  • Du, L. L., Yang, C. H., Wang, W., Ren, L. D., Wan, Y. S., Wu, J. S., et al. (2012). Paleoproterozoic rifting of the North China Craton: Geochemical and zircon Hf isotopic evidence from the 2137 Ma Huangjinshan A-type granite porphyry in the Wutai area. Journal of Asian Earth Sciences, 72, 190–202.

    Article  Google Scholar 

  • El Desouky, H. A., Muchez, P., Boyce, A. J., Schneider, J., Cailteux, J. L., Dewaele, S., et al. (2010). Genesis of sediment-hosted stratiform copper–cobalt mineralization at Luiswishi and Kamoto, Katanga Copperbelt (Democratic Republic of Congo). Mineralium Deposita, 45, 735–763.

    Article  Google Scholar 

  • El Desouky, H. A., Muchez, P., & Cailteux, J. (2009). Two Cu–Co sulfide phases and contrasting fluid systems in the Katanga Copperbelt, Democratic Republic of Congo. Ore Geology Reviews, 36, 315–332.

    Article  Google Scholar 

  • Goodfellow, W., & Lydon, J. (2007). Sedimentary exhalative (SEDEX) deposits. Mineral deposits of Canada: A synthesis of major deposit types, district metallogeny, the evolution of geological provinces, and exploration methods. Geological Association of Canada, Mineral Deposits Division, Special Publication, 163–183.

    Google Scholar 

  • He, Y., Zhao, G., Sun, M., & Wilde, S. A. (2008). Geochemistry, isotope systematics and petrogenesis of the volcanic rocks in the Zhongtiao Mountain: An alternative interpretation for the evolution of the southern margin of the North China Craton. Lithos, 102, 158–178.

    Article  Google Scholar 

  • Heinrich, C., Günther, D., Audétat, A., Ulrich, T., & Frischknecht, R. (1999). Metal fractionation between magmatic brine and vapor, determined by microanalysis of fluid inclusions. Geology, 27, 755–758.

    Article  Google Scholar 

  • Heinrich, C. A. (2007). Fluid-fluid interactions in magmatic-hydrothermal ore formation. Reviews in Mineralogy and Geochemistry, 65, 363–387.

    Article  Google Scholar 

  • Henley, R., & Mcnabb, A. (1978). Magmatic vapor plumes and ground-water interaction in porphyry copper emplacement. Economic Geology, 73, 1–20.

    Article  Google Scholar 

  • Hitzman, M., Kirkham, R., Broughton, D., Thorson, J., & Selley, D. (2005). The sediment-hosted stratiform copper ore system. Economic Geology, 100 (Anniversary Volume), 609–642.

    Google Scholar 

  • Hitzman, M. W., Selley, D., & Bull, S. (2010). Formation of sedimentary rock-hosted stratiform copper deposits through Earth history. Economic Geology, 105, 627–639.

    Article  Google Scholar 

  • Holland, H. D. (1972). Granites, solutions, and base metal deposits. Economic Geology, 67, 281–301.

    Article  Google Scholar 

  • Hou, Z., Yang, Z., Lu, Y., Kemp, A., Zheng, Y., Li, Q., et al. (2015). A genetic linkage between subduction-and collision-related porphyry Cu deposits in continental collision zones. Geology, 43, 247–250.

    Article  Google Scholar 

  • Hou, Z. Q., Pan, X. F., Yang, Z. M., & Qu, X. M. (2007). Porphyry Cu-(Mo-Au) deposits no related to oceanic-slab subduction: Examples from Chinese porphyry depositsin continental settings. Geoscience, 21, 332–351. (in Chinese).

    Google Scholar 

  • Hu, W. X., & Sun, D. Z. (1987). Mineralization and evolution of the early proterozoic copper deposits in the Zhongtiao Mountains. Acta Geologica Sinica, 152–165 (in Chinese).

    Google Scholar 

  • Huang, C. K., Bai, Y., Zhu, Y. S., Wang, H. Z., & Shang, X. Z. (2001). Copper deposit of China (pp. 142–152). Beijing: Geological Publishing House.

    Google Scholar 

  • Huang, W. P., Sun, F. Y., Zhang, H., & Wang, J. L. (2013). Petrology and geochemistry characteristic of Hu-Bi copper deposit in Zhongtiao mountains of Shanxi Province. Global Geology, 32, 212–220. (in Chinese).

    Google Scholar 

  • Huston, D. L., Pehrsson, S., Eglington, B. M., & Zaw, K. (2010). The geology and metallogeny of volcanic-hosted massive sulfide deposits: Variations through geologic time and with tectonic setting. Economic Geology, 105, 571–591.

    Article  Google Scholar 

  • Jiang, Y., Niu, H., Bao, Z., Li, N., Shan, Q., & Yang, W. (2014a). Fluid evolution of the Tongkuangyu porphyry copper deposit in the Zhongtiaoshan region: Evidence from fluid inclusions. Ore Geology Reviews, 63, 498–509.

    Article  Google Scholar 

  • Jiang, Y., Niu, H., Bao, Z., Li, N., Shan, Q., Yang, W., et al. (2014b). Fluid evolution of the Paleoproterozoic Hujiayu copper deposit in the Zhongtiaoshan region: Evidence from fluid inclusions and carbon–oxygen isotopes. Precambrian Research, 255, 734–747.

    Article  Google Scholar 

  • Jiang, Y. H., Luo, Y., Niu, H. C., Guo, S. L., & Li, N. B. (2013). Study on fluid inclusions from the Luojiahe copper deposit in Zhongtiaoshan region. Acta Petrologica Sinica, 29, 2583–2592. (in Chinese).

    Google Scholar 

  • Lai, J., & Chi, G. (2007). CO2-rich fluid inclusions with chalcopyrite daughter mineral from the Fenghuangshan Cu–Fe–Au deposit, China: Implications for metal transport in vapor. Mineralium Deposita, 42, 293–299.

    Article  Google Scholar 

  • Land, L. S., & Milliken, K. L. (1981). Feldspar diagenesis in the Frio Formation, Brazoria County, Texas Gulf Coast. Geology, 9, 314–318.

    Article  Google Scholar 

  • Leach, D. L., Bradley, D. C., Huston, D., Pisarevsky, S. A., Taylor, R. D., & Gardoll, S. J. (2010). Sediment-hosted lead-zinc deposits in Earth history. Economic Geology, 105, 593–625.

    Article  Google Scholar 

  • Lerchbaumer, L., & Audétat, A. (2012). High Cu concentrations in vapor-type fluid inclusions: An artifact? Geochimica et Cosmochimica Acta, 88, 255–274.

    Article  Google Scholar 

  • Li, N. B., Luo, Y., Jiang, Y. H., Guo, S. L., & Niu, H. C. (2013). Zircon U-Pb geochronology and Hf isotopic characteristic of metamorphic quartz-monzonite porphyry from Tongkuangyu area, Zhongtiao Mountain and their geological implications. Acta Petrologica Sinica, 29, 2416–2424. (in Chinese).

    Google Scholar 

  • Liang, H. Y., Sun, W. D., Su, W. C., & Zartman, R. E. (2009). Porphyry copper-gold mineralization at Yulong, China, promoted by decreasing redox potential during magnetite alteration. Economic Geology, 104, 587–596.

    Article  Google Scholar 

  • Liu, C. H., Zhao, G. C., Sun, M., Zhang, J., & Yin, C. (2012). U-Pb geochronology and Hf isotope geochemistry of detrital zircons from the Zhongtiao Complex: Constraints on the tectonic evolution of the Trans-North China Orogen. Precambrian Research, 222–223, 159–172.

    Article  Google Scholar 

  • Liu, X., Fan, H.-R., Santosh, M., Yang, K.-F., Qiu, Z.-J., Hu, F.-F., et al. (2015). Geological and geochronological constraints on the genesis of the giant Tongkuangyu Cu deposit (Palaeoproterozoic), North China Craton. International Geology Review, 1–16.

    Google Scholar 

  • Longstaffe, F. J. (1989). Stable isotopes as tracers in clastic diagenesis. In I. E. Hutcheon1 (Ed.), Short course in burial diagenesis: Mineral Association of Canada Short Course (pp. 201–284).

    Google Scholar 

  • Lowenstern, J. B. (2001). Carbon dioxide in magmas and implications for hydrothermal systems. Mineralium Deposita, 36, 490–502.

    Article  Google Scholar 

  • Melezhik, V. A., Fallick, A. E., Medvedev, P. V., & Makarikhin, V. V. (1999). Extreme 13Ccarb enrichment in ca. 2.0 Ga magnesite–stromatolite–dolomite–‘red beds’ association in a global context: a case for the world-wide signal enhanced by a local environment. Earth-Science Reviews, 48, 71–120.

    Article  Google Scholar 

  • Moore, J. (2010). Comparative study of the Onganja copper mine, Namibia: A link between Neoproterozoic mesothermal Cu (-Au) mineralization in Namibia and Zambia. South African Journal of Geology, 113, 445–460.

    Article  Google Scholar 

  • Mungall, J. E. (2002). Roasting the mantle: Slab melting and the genesis of major Au and Au-rich Cu deposits. Geology, 30, 915–918.

    Article  Google Scholar 

  • Oakes, C. S., Bodnar, R. J., & Simonson, J. M. (1990). The system NaCl-CaCl2-H2O: I. The ice liquidus at 1 atm total pressure. Geochimica et Cosmochimica Acta, 54, 603–610.

    Article  Google Scholar 

  • Oliver, N. H., Rawling, T. J., Cartwright, I., & Pearson, P. J. (1994). High-temperature fluid-rock interaction and scapolitization in an extension-related hydrothermal system, Mary Kathleen, Australia. Journal of Petrology, 35, 1455–1491.

    Article  Google Scholar 

  • O’Neil, J. R., Clayton, R. N., & Mayeda, T. K. (1969). Oxygen isotope fractionation in divalent metal carbonates. The Journal of Chemical Physics, 51, 5547.

    Article  Google Scholar 

  • Pirajno, F. (2009). Hydrothermal processes and mineral systems (pp. 581–726). Heidelberg: Springer.

    Google Scholar 

  • Pollard, P. J. (2001). Sodic (–calcic) alteration in Fe-oxide–Cu–Au districts: An origin via unmixing of magmatic H2O–CO2–NaCl ± CaCl2–KCl fluids. Mineralium Deposita, 36, 93–100.

    Article  Google Scholar 

  • Robb, L. (2013). Introduction to ore-forming processes. New York: Wiley.

    Google Scholar 

  • Roedder, E. (1971). Fluid inclusion studies on the porphyry-type ore deposits at Bingham, Utah, Butte, Montana, and Climax, Colorado. Economic Geology, 66, 98–118.

    Article  Google Scholar 

  • Rui, Z. Y., Huang, C. K., Qi, G. M., Xu, J., Zhang, H. T. (1984). Porphyry copper (molybdenum) deposits of China (pp. 279–315). Beijing: Geological publishing house (in Chinese).

    Google Scholar 

  • Rui, Z. Y., Li, Y. Q., Wang, L. S., & Wang, Y. T. (2003). Approach to ore-forming conditions in light of ore fluid inclusions. Mineral Deposits, 22, 13–23. (in Chinese).

    Google Scholar 

  • Selley, D., Broughton, D., Scott, R., Hitzman, M., Bull, S., Large, R., et al. (2005). A new look at the geology of the Zambian Copperbelt. Society of Economic Geologists Inc., 100 (Anniversary Volume), 965–1000.

    Google Scholar 

  • Sillitoe, R. H. (1997). Characteristics and controls of the largest porphyry copper-gold and epithermal gold deposits in the circum-Pacific region. Australian Journal of Earth Sciences, 44, 373–388.

    Article  Google Scholar 

  • Sillitoe, R. H. (2010). Porphyry Copper Systems. Economic Geology, 105, 3–41.

    Article  Google Scholar 

  • Suleimenov, O., & Krupp, R. (1994). Solubility of hydrogen sulfide in pure water and in NaCl solutions, from 20 to 320 °C and at saturation pressures. Geochimica et Cosmochimica Acta, 58, 2433–2444.

    Article  Google Scholar 

  • Sun, D. Z., Hu, W. X. (1993). Precambrian geochronology, chronotectonic framework and model of chronocrustal structure of the Zhongtiao Mountains (1st ed., pp. 1–102). Beijing: Geological publishing house (in Chinese).

    Google Scholar 

  • Sun, D. Z., Hu, W. X., Tang, M., Zhao, F. Q., & Condie, K. C. (1990). Origin of Late Archean and Early Proterozoic rocks and associated mineral deposits from the Zhongtiao Mountains, east-central China. Precambrian Research, 47, 287–306.

    Article  Google Scholar 

  • Sun, D. Z., Li, H. M., Lin, Y. X., Zhou, H. F., Zhao, F. Q., & Tang, M. (1991). Precambrian geochronology, chronotectonic framework and model of chronocrustal structure of the Zhongtiao Mountains. Acta Petrologica Sinica, 3, 216–231. (in Chinese).

    Google Scholar 

  • Sun, H. T., & Ge, C. H. (1990). Hydrothermal exhalative copper deposits in Zhongtiaoshan District, Shanxi Province (1st ed., pp. 101–106). Beijing: Beijing Science and Technology Press (in Chinese).

    Google Scholar 

  • Sun, J. G., Li, H. Y., Liu, X. H., Xie, K. Q., Li, B. L., & Yin, D. W. (2014). Alteration and mineralization characteristics of Tongkuangyu copper deposit in Zhongtiao Mountain, Shanxi Province. Mineral Deposits, 33, 1306–1324. (in Chinese).

    Google Scholar 

  • Sun, J. Y., Ji, S. K., & Zhen, Y. Q. (1995). The copper deposits in the Zhongtiao rift (1st ed., pp. 84–140). Beijing: Geological publishing house (in Chinese).

    Google Scholar 

  • Sun, W. D., Arculus, R. J., Kamenetsky, V. S., & Binns, R. A. (2004). Release of gold-bearing fluids in convergent margin magmas prompted by magnetite crystallization. Nature, 431, 975–978.

    Article  Google Scholar 

  • Sun, W. D., Liang, H. Y., Ling, M. X., Zhan, M. Z., Ding, X., Zhang, H., et al. (2013). The link between reduced porphyry copper deposits and oxidized magmas. Geochimica et Cosmochimica Acta, 103, 263–275.

    Article  Google Scholar 

  • Tang, H.-S., Chen, Y.-J., Santosh, M., Zhong, H., & Yang, T. (2013). REE geochemistry of carbonates from the Guanmenshan Formation, Liaohe Group, NE Sino-Korean Craton: Implications for seawater compositional change during the Great Oxidation Event. Precambrian Research, 227, 316–336.

    Article  Google Scholar 

  • Taylor, H. (1974). The application of oxygen and hydrogen isotope studies to problems of hydrothermal alteration and ore deposition. Economic Geology, 69, 843–883.

    Article  Google Scholar 

  • Wang, Z., & Wen, G. (1957). Zhongtiaoshan style Porphyry copper deposit. Acta Geologica Sinica, 4, 401–421. (in Chinese).

    Google Scholar 

  • Wei, D. Y., Xing, S. C., & Liang, X. (1984). The implications of the Hu-Bi type copper deposits in the Zhongtiaoshan region. Acta of Hebei Geological College, 25, 30–41. (in Chinese).

    Google Scholar 

  • Williams-Jones, A. E., & Heinrich, C. A. (2005). Vapor transport of metals and the formation of magmatic-hydrothermal ore deposits. Society of Economic Geologists Inc, 100 (Anniversary Volume), 1287–1312.

    Google Scholar 

  • Xie, J. R. (1963). Problems pertaining to geology and ore deposits of a copper deposit in Shansi province. Science in China, Series A, 1345–1355.

    Google Scholar 

  • Xu, Q. L. (2010). Study on the geological characteristics and ore genesis of Tongkuangyu copper deposit in the Zhongtiaoshan Mountains, Shanxi Province (pp. 59–71). Master thesis, Jilin University (in Chinese).

    Google Scholar 

  • Xu, W. X., Guo, X. S., Ji, S. K., Lu, J. R., & Li, S. P. (1995). Geochemstry study of Tongkuangyu Cu deposit. Mineral Resources Geology, 9, 77–86. (in Chinese).

    Google Scholar 

  • Yang, Z.-M., Lu, Y.-J., Hou, Z.-Q., & Chang, Z.-S. (2015). High-Mg diorite from Qulong in southern Tibet: Implications for the genesis of adakite-like intrusions and associated porphyry Cu deposits in collisional orogens. Journal of Petrology, egu076.

    Google Scholar 

  • Zhai, M. G., Li, T. S., Peng, P., Hu, B., Liu, F., & Zhang, Y. (2010). Precambrian key tectonic events and evolution of the North China Craton. Geological Society, London, Special Publications, 338, 235–262.

    Article  Google Scholar 

  • Zhai, M. G., & Santosh, M. (2011). The early Precambrian odyssey of the North China Craton: A synoptic overview. Gondwana Research, 20, 6–25.

    Article  Google Scholar 

  • Zhai, M. G., & Santosh, M. (2013). Metallogeny of the North China Craton: Link with secular changes in the evolving Earth. Gondwana Research, 24, 275–297.

    Article  Google Scholar 

  • Zhang, H. (2012). Metallogenesis of paleoproterozoic copper deposits in the northern Zhongtiaoshan Mountains, Shanxi Province (pp. 119–123). PhD thesis, Jilin University (in Chinese).

    Google Scholar 

  • Zhao, T. P., Zhou, M. F., Zhai, M. G., & Xia, B. (2002). Paleoproterozoic rift-related volcanism of the Xiong’er Group, North China Craton: Implications for the breakup of Columbia. International Geology Review, 44, 336–351.

    Article  Google Scholar 

  • Zhao, X.-F., Zhou, M.-F., Hitzman, M. W., Li, J.-W., Bennett, M., Meighan, C., et al. (2012). Late Paleoproterozoic to early Mesoproterozoic Tangdan sedimentary rock-hosted strata-bound copper deposit, Yunnan Province, Southwest China. Economic Geology, 107, 357–375.

    Article  Google Scholar 

  • Zhen, Y. Q., & Shu, Q. A. (2006). Oxygen isotope implications for the fluid of copper ore in Zhongtiaoshan area. Geological Survey and Research, 29, 30–37. (in Chinese).

    Google Scholar 

  • Zheng, Y. F., & Chen, J. F. (2000). Stable isotope geochemistry (1st ed., pp. 291–296). Beijing: Science press.

    Google Scholar 

  • Zhou, X. (2007). Studies on Geologieal-geoehemical charaeteristies of Tongkuangyu iron oxide-copper-gold deposit in Zhongtiao Mountains, Shanxi Province. Master thesis, Central South University (in Chinese).

    Google Scholar 

Download references

Acknowledgments

This study was financially supported by the National Basic Research Program of China (No. 2012CB416603). The Zhongtiaoshan Non-Ferrous Metals Group Co., Ltd. is thanked for the assistances during the field work. Special thanks are due to Prof. Chen Bin for his constructive comments. We also thank Prof. Sun Weidong and Prof. Chen Huayong from Guangzhou Institute of Geochemistry, Chinese Academy of Sciences for their constructive suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hecai Niu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Jiang, Y., Zhao, Y., Niu, H. (2016). Paleoproterozoic Copper System in the Zhongtiaoshan Region, Southern Margin of the North China Craton: Ore Geology, Fluid Inclusion, and Isotopic Investigation. In: Zhai, M., Zhao, Y., Zhao, T. (eds) Main Tectonic Events and Metallogeny of the North China Craton. Springer Geology. Springer, Singapore. https://doi.org/10.1007/978-981-10-1064-4_9

Download citation

Publish with us

Policies and ethics