Skip to main content

Genetic Mechanism and Metamorphic Evolution of Khondalite Series Within the Paleoproterozoic Mobile Belts, North China Craton

  • Chapter
  • First Online:
Main Tectonic Events and Metallogeny of the North China Craton

Part of the book series: Springer Geology ((SPRINGERGEOL))

Abstract

The Paleoproterozoic khondalite series rocks of the North China Craton, consisting mainly of graphite-bearing Al-rich gneiss/granulite, garnet quartzite, felsic paragneiss, calc-silicate rock, and marble, contain important information about the composition, tectonic evolution, and growth history of the early continental crust, and provide important insights into the formation and evolution of the North China Craton. Integrated analysis of petrography, geochemistry, mineral compositions, metamorphic reaction textures and history, thermobarometry and pseudosection modeling, and geochronology of these khondalite series rocks from the Wulashan-Daqingshan Complex within the Khondalite Belt and Jiaobei Complex within the Jiao-Liao-Ji Belt, combined with previous metamorphic and geochronological data, indicated the following sedimentary, metamorphic, magmatic, and tectonic processes. (i) The sedimentary protoliths of the khondalite series rocks in the Khondalite Belt and Jiao-Liao-Ji Belt were likely deposited in an active continental margin in the late Paleoproterozoic, ranging from 2200 to 2000 Ma and from 1950 to 1930 Ma, respectively. (ii) During the period from 2000 to 1950 Ma, the protoliths of the khondalite series rocks from the Khondalite Belt and Jiao-Liao-Ji Belt experienced a crustal thickening event due to subduction of the Paleoproterozoic oceanic crust. As a result of tectonic burial and heat conduction, a greenschist facies to amphibolite facies prograde metamorphism occurred in the upper and middle crust region of the Khondalite Belt and Jiao-Liao-Ji Belt, forming the early mineral assemblage of garnet (core) and inclusion-type minerals (e.g., biotite, quartz, and plagioclase). (iii) During the period from 1950 to 1900 Ma, accompanied by cessation of oceanic crust subduction, the aggregation between the Paleoproterozoic arc and Archean continent and the collision between the Archean continents caused regional middle- and high-pressure granulite-facies metamorphism, as represented by the mineral assemblage of garnet and matrix-type minerals (e.g., kyanite/sillimanite, K-feldspar, plagioclase, biotite, quartz, Fe–Ti oxide, and liquid) in the pelitic granulites of the Khondalite Belt and Jiao-Liao-Ji Belt, occurring in a region of ca. 35–45 km of the thickened lower crust or arc root at ca. 1950–1900 Ma. (iv) During the period from 1900 to 1800 Ma, after the main collision and peak middle- and high-pressure granulite-facies metamorphism, the Paleoproterozoic khondalite series rocks experienced post-peak retrogressive metamorphism in the post-collisional exhumation and extension stage. The post-peak metamorphic and tectonic processes can be divided into two stages. During the early fast tectonic exhumation stage, the pelitic granulites of the Paleoproterozoic khondalite series rocks from the Khondalite Belt and Jiao-Liao-Ji Belt experienced slight heating or a nearly isothermal decompression, which resulted in overprinting of the regional middle- and low-pressure granulite-facies metamorphism, and the development of cordierite-bearing symplectite around the garnets. Meanwhile, emplacement of the ca. 1900–1850 mafic dyke/sill swarms and partial melting of the crustal rocks were caused by underplating of mantle-derived mafic magma in the early stage. After the temperature peak, the late retrogressive metamorphism was dominated by slow near-isobaric cooling processes, which resulted in overprinting of the regional amphibolite facies metamorphism and the development of biotite-bearing symplectites around garnets in the pelitic rocks. In summary, the Paleoproterozoic khondalite series rocks from the Khondalite Belt and Jiao-Liao-Ji Belt are characterized by clockwise PTt paths bearing isothermal decompression and isobaric cooling processes metamorphic processes, suggesting that they were involved in the rapid deposition-, subduction-, aggregation-, and collision-related tectonic processes in an active continental margin or continental arc setting during the period from 2200 to 1800 Ma.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aydin, F., Karsli, O., & Sadiklar, M.-B. (2003). Mineralogy and chemistry of biotites from Eastern Pontide granitoid rocks, NE-Turkey: Some petrological implications for granitoid magmas. Chemie der Erde-Geochemistry, 63, 163–182.

    Article  Google Scholar 

  • Barbey, P., Capdevila, R., & Hameurt, J. (1982). Major and transition trace element abundances in the khondalite suite of the granulite belt of Lapland (Fennoscandia): Evidence for an early Proterozoic flysch belt. Precambrian Research, 16, 273–290.

    Article  Google Scholar 

  • Bates, R.-L, & Jackson, J.-A (1980). Glossary of geology (2nd ed., p. 340). Falls Church, Virginia: American Geological Institute.

    Google Scholar 

  • Bhat, M.-I., & Ghosh, S.-K. (2001). Geochemistry of the 2.51 Ga old Rampur group pelites, western Himalayas: implications for their provenance and weathering. Precambrian Research, 108, 1–16.

    Article  Google Scholar 

  • Bhatia, M.-R. (1983). Plate tectonics and geochemical composition of sandstones. Journal of Geology, 91, 611–627.

    Article  Google Scholar 

  • Bhatia, M.-R. (1985). Rare earth element geochemistry of Australian Paleozoic graywackes and mudrocks: Provenance and tectonic control. Sedimentary Geology, 45, 97–113.

    Article  Google Scholar 

  • Bhatia, M.-R., & Crook, K.-A.-W. (1986). Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins. Contributions to Mineralogy and Petrology, 92, 181–193.

    Article  Google Scholar 

  • Brown, M. (1993). P-T-t evolution of orogenic belts and the causes of regional metamorphism. Journal of the Geological Society, London, 150(2), 227–241.

    Article  Google Scholar 

  • Brown, M. (2001). From microscope to mountain belt: 150 years of petrology and its contribution to understanding geodynamics, particularly the tectonics of orogens. Journal of Geodynamics, 32, 115–164.

    Article  Google Scholar 

  • Brown, M. (2006). A duality of thermal regimes is the distinctive characteristic of plate tectonics since the Neoarchean. Geology, 34, 961–964.

    Article  Google Scholar 

  • Brown, M. (2007). Metamorphic conditions in orogenic belts: A record of secular change. International Geology Review, 49, 193–234.

    Article  Google Scholar 

  • Brown, M. (2008). Characteristic thermal regimes of plate tectonics and their metamorphic imprint throughout Earth history. In K. Condie & V. Pease (Eds.), When did plate tectonics begin? (Vol. 440, pp. 97–128). Washington: Geological Society of America Special Papers.

    Google Scholar 

  • Brown, M. (2014). The contribution of metamorphic petrology to understanding lithosphere evolution and geodynamics. Geoscience Frontiers, 5(4), 553–569.

    Article  Google Scholar 

  • Cai, J., Liu, F.-L., Liu, P.-H., Liu, C.-H., Wang, F., & Shi, J.-R. (2014). Metamorphic P-T path and tectonic implications of pelitic granulites from the Daqingshan Complex, North China Craton. Precambrian Research, 241, 161–184.

    Article  Google Scholar 

  • Cai, J., Liu, F.-L., Liu, P.-H., Wang, F., & Shi, J.-R. (2015). Geochronology of the Paleoproterozoic Khondalite rocks from the Wulashan-Daqingshan area, the Khondalite Belt. Acta Petrologica Sinica, 31(10), 3081–3106.

    Google Scholar 

  • Cai, J.-H., Yan, G.-H., Mu, B.-L., Xu, B.-L., Shao, H.-X., & Xu, R.-H. (2002). U-Pb and Sm-Ndisotopic ages of an alkaline syenite complex body in Liangtun-Kuangdongguo, Gai County, Liaoning Province, China and their geological significance. Acta Petrologica Sinica, 18, 349–354.

    Google Scholar 

  • Carswell, D.-A., & O’Brien, P.-J. (1993). Thermobarometry and geotectonic significance of high-pressure granulites: examples from the Moldanubian Zone of the Bohemian Massif in Lower Austria. Journal of Petrology, 34(3), 427–459.

    Article  Google Scholar 

  • Cesare, B., Satish-Kumar, M., Cruciani, G., Pocker, S., & Nodari, L. (2008). Mineral chemistry of Ti-rich biotite from pegmatite and metapelitic granulites of the Kerala Khondalite Belt (southeast India): Petrology and further insight into titanium substitutions. American Mineralogist, 93, 327–338.

    Article  Google Scholar 

  • Chacko, T., Ravindra, K.-G.-R., & Newton, R.-C. (1987). Metamorphic P-T conditions of Kerala (South India) khondalite belt: A granulite facies supracrustal terrain. Journal of Geology, 95, 343–358.

    Article  Google Scholar 

  • Chu, H., Lu, S.-N., Wang, H.-C., Xiang, Z.-Q., & Liu, H. (2011). U-Pb age spectrum of detrital zircons from the Fuzikuang Formaation, Penglai Group in Chandong Province. Acta Petrologica Sinica, 27(4), 1017–1028.

    Google Scholar 

  • Coggon, R., & Holland, T.-J.-B. (2002). Mixing properties of phengitic micas and revised garnet-phengite thermobarometers. Journal of Metamorphic Geology, 20, 683–696.

    Article  Google Scholar 

  • Condie, K.-C., Boryta, M.-D., Liu, J.-Z., & Qian, X.-L. (1992). The origin of khondalites: Geochemical evidence from the Archean to early Proterozoic granulite belt in the North China craton. Precambrian Research, 59(3–4), 207–223.

    Article  Google Scholar 

  • Cooray, P.-G. (1962). Charnockites and their associated gneisses in the Precambrian of ceylon. Quarterly. Journal of the Geological Society, 118, 239–273.

    Article  Google Scholar 

  • Dallmeyer, R.-D., & Dodd, R.-T. (1971). Distribution and significance of cordierite in paragneisses of the Hudson Highlands, Southeastern New York. Contributions to Mineralogy and Petrology, 33, 289–308.

    Article  Google Scholar 

  • Daly, J.-S., Balagansky, V.-V., Timmerman, M.-J., Whitehouse, M.-J., de Jong, K., Guise, P., et al. (2001). Ion microprobe U-Pb zircon geochronology and isotopic evidence for a trans-crustal suture in the Lapland-Kola Orogen, northern Fennoscandian Shield. Precambrian Reseach, 105, 289–314.

    Article  Google Scholar 

  • Dan, W., Li, X.-H., Guo, J.-H., Liu, Y., & Wang, X.-C. (2012). Integrated in situ zircon U-Pb age and Hf-O isotopes for the Helanshan khondalites in North China Craton: Juvenile crustal materials deposited in active or passive continental margin? Precambrian Research, 222–223, 143–158.

    Article  Google Scholar 

  • Dash, B., Sahu, K.-N., & Bowes, D.-R. (1987). Geochemistry and original nature of Precambrian khondalites in the Eastern Ghats, Orissa, India. Transactions of the Royal Society of Edinburgh: Earth Sciences, 78, 115–127.

    Article  Google Scholar 

  • Deer, W.-A., Howie, R.-A., & Zussman, J. (1997). Rock-forming minerals (pp. 3–4). Second editon.Washington D.C.: Geological Society Publishing House.

    Google Scholar 

  • Dong, X.–J. (2012). Composition and evolution of the early precambrian basement in Daqingshan Region, Inner Mongolia. Unpublished Ph.D. thesis. Jilin University, Changchun (in Chinese with English abstract).

    Google Scholar 

  • Dong, C.-Y., Liu, D.-Y., Li, J.-J., Wan, Y.-S., Zhou, H.-Y., Li, C.-D., et al. (2007). Paleoproterozoic Khondalite Belt in the western North China Craton: New evidence from SHRIMP dating and Hf isotope composition of zircons from metamorphic rocks in the Bayan Ul-Helan Mountains area. Chinese Science Bulletin, 52(16), 2984–2994.

    Article  Google Scholar 

  • Dong, C.-Y., Liu, D.-Y., Wan, Y.-S., Xu, Z.-Y., Liu, Z.-H., & Yang, Z.-S. (2009a). Crustally derived carbonatite from the Daqingshan area: zircon features and SHRIMP dating. Acta Geologica Sinica, 83(3), 388–398. (in Chinese with English abstract).

    Article  Google Scholar 

  • Dong, C.-Y., Liu, D.-Y., Wan, Y.-S., Xu, Z.-Y., Wang, W., & Xie, H.-Q. (2009b). Hf isotope composition and REE pattern of zircons from early Precambrian metamorphic rocks in the Daqing Mountains. Inner Mongolia. Geological Review, 55(4), 509–520. (in Chinese with English abstract).

    Google Scholar 

  • Dong, C.-Y., Wan, Y.-S., Wilde, S.-A., Xu, Z.-Y., Ma, M.-Z., Xie, H.-Q., & Liu, D.-Y. (2014). Ealiest Paleoproterozoic supracrustal rocks in the North China Craton recognized from the Daqingshan Area of the Khondalite Belt: Constraints on craton evolution. Gondwana Research, 25(4), 1535–1553.

    Article  Google Scholar 

  • Dong, C.-Y., Wan, Y.-S., Xu, Z.-Y., Liu, D.-Y., Yang, Z.-S., Ma, M.-Z., & Xie, H.-Q. (2012). SHRIMP zircon U-Pb dating of late Paleoproterozoic kondalites in the Daqing Mountains area on the North China Craton. Science China Earth Sciences, 56(1), 1–11.

    Google Scholar 

  • Dong, C.-Y., Wang, S.-J., Liu, D.-Y., Wang, J.-G., Xie, H.-Q., Wang, W., et al. (2011). Late Palaeoproterozoic crustal evolution of the North China Craton and formation time of the Jingshan Group: Constraints from SHRIMP U-Pb zircon dating of meta-intermediate-basic intrusive rocks in eastern Shandong Province. Acta Petrologica Sinica, 27(6), 1699–1706.

    Google Scholar 

  • Du, L.-L., Yang, C.-H., Wei, W., Ren, L.-D., Wan, Y.-S., Wu, J.-S., et al. (2013). Paleoproterozoic rifting of the North China Craton: Geochemical and zircon Hf isotopic evidence from the 2137 Ma Huangjinshan A-type granite porphyry in the Wutai area. Journal of Asian Earth Sciences, 72(4), 190–202.

    Article  Google Scholar 

  • Eills, D.-J. (1987). Origin and evolution of granulites in normal and thickened crusts. Geology, 15(2), 167–170.

    Article  Google Scholar 

  • England, P.-C., & Richardson, S.-W. (1977). The influence of erosion upon the mineral facies of rocks from different metamorphic environments. Journal of the Geological Society of London, 134, 201–213.

    Article  Google Scholar 

  • England, P.-C., & Thompson, A.-B. (1984). Pressure-temperature-time paths of regional metamorphism I. Heat transfer during the evolution of regions of thickened continental crust. Journal of Petrology, 25, 894–928.

    Article  Google Scholar 

  • Faure, M., Lin, W., Monid, P., Breton, N.-L., Poussineau, S., Panis, D., & Deloule, E. (2003). Exhumation tectonics of the ultrahigh-pressure metamorphic rocks in the Qinling orogen in east China: New petrological-structu ral-rad iometric insights from the Shandong Peninsula. Tectonics, 22(3), 1018–1040.

    Article  Google Scholar 

  • Floyd, P.-A., & Leveridge, B.-E. (1987). Tectonic environment of the Devonian Gramscatho basin, South Cornwall: Framework mode and geochemical evidence from turbiditie sandstones. Journal of the Geological Society, 144(4), 531–542.

    Article  Google Scholar 

  • Foster, M.-D. (1960). Interpretation of the composition of trioctahedral micas. United States Geological Survey. Professional Paper, 354, 11–48.

    Google Scholar 

  • Garrels, R.-M., & Mackenzie, F.-T. (1971). Evolution of sedimentary rocks (p. 397). New York: Norton.

    Google Scholar 

  • Guo, J.-H., Chen, Y., Peng, P., Liu, F., Chen, L., Zhang, L.-Q. (2006). Sapphirine-bearing granulite in Daqingshan, Inner Mongolia: 1.8 Ga UHT metamorphic events. In Abstract Volume of 2006 Petrology and Earth dynamics in China (pp. 215–218). Nanjing University, Nanjing (in Chinese with English abstract).

    Google Scholar 

  • Guo, J.-H., Peng, P., Chen, Y., Jiao, S.-J., & Windley, B.-F. (2012). UHT sapphirine granulite metamorphism at 1.93–1.92 Ga caused by gabbronorite intrusions: Implications for tectonic evolution of the northern margin of the North China Craton. Precambrian Research, 222–223, 124–142.

    Article  Google Scholar 

  • Harley, S.-L. (1989). The origins of granulites: a metamorphic perspective. Geological Magazine, 126(3), 215–247.

    Article  Google Scholar 

  • Harris, N. (1981). The application of spinel-bearing metapelites to P/T determinations: An example from South India. Contributions to Mineralogy and Petrology, 76, 229–233.

    Article  Google Scholar 

  • Henry, D.-J., & Guidotti, C.-V. (2002). Titanium in biotite from metapelitic rocks: Temperature effects, crystal-chemical controls, and petrologic applications. American Mineralogist, 87, 375–382.

    Article  Google Scholar 

  • Herron, M.-M. (1988). Geochemical classification of terrigeneous sands and shales from core or log data. Journal of Sedimentary Petrology, 58, 820–829.

    Google Scholar 

  • Holland, T.-J.-B., & Powell, R. (1998). An internally consistent thermodynamic data set for phases of petrological interest. Journal of Metamorphic Geology, 16, 309–343.

    Google Scholar 

  • Holland, T.-J.-B., & Powell, R. (2003). Activity-composition relations for phases in petrological calculations: An asymmetric multicomponent formulation. Contributions to Mineralogy and Petrology, 145, 492–501.

    Article  Google Scholar 

  • Hollis, J.-A., Harley, S.-L., White, R.-W., & Clarke, G.-L. (2006). Preservation of evidence for prograde metamorphism in ultrahigh-temperature, high-pressure kyanite-bearing granulites, South Harris, Scotland. Journal of Metamorphic Geology, 24, 263–279.

    Article  Google Scholar 

  • Hou, W.-R., Nie, F.-J., Hu, J.-M., Liu, Y.-F., Xiao, W., Liu, Y., & Zhang, K. (2011). Geochronology and geochemistry of Shadegai granites in Wulashan area, Inner Mongolia and its geological significance. Journal of Jilin University (Earth Science Edition), 41(6), 1914–1927. (in Chinese with English abstract).

    Google Scholar 

  • Jahn, B.-M., Liu, D.-Y., Wan, Y.-S., Song, B., & Wu, J.-S. (2008). Archean crustal evolution of the Jiaodong Peninsula, China, as revealed by zircon SHRIMP geochronology, elemental and Nd-isotope geochemistry. American Journal of Science, 308(3), 232–269.

    Article  Google Scholar 

  • Ji, Z.-Y. (1993). New data on isotope age of the Proterozoic metamorphic rocks from northern Jiaodong and its geological significance. Shandong Geology, 9(1), 43–51. (in Chinese).

    Google Scholar 

  • Jiao, S.-J., & Guo, J.-H. (2011). Application of the two-feldspar geothermometer to ultrahigh-temperature (UHT) rocks in the Khondalite belt, North China craton and its implications. American Mineralogist, 96, 250–260.

    Article  Google Scholar 

  • Jiao, S.-J., Guo, J.-H., Harley, S.-L., & Peng, P. (2013a). Geochronology and trace element geochemistry of zircon, monazite and garnet from the garnetite and/or associated other high-grade rocks: Implications for Palaeoproterozoic tectonothermal evolution of the Khondalite Belt, North China Craton. Precambrian Research, 237, 78–100.

    Article  Google Scholar 

  • Jiao, S.-J., Guo, J.-H., Harley, S.-L., & Windley, B.-F. (2013b). New constraints from garnetite on the P-T path of the Khondalite belt: Implications for the tectonic evolution of the North China Craton. Journal of Petrology, 54(9), 1725–1758.

    Article  Google Scholar 

  • Jiao, S.-J., Guo, J.-H., Mao, Q., & Zhao, R.-F. (2011). Application of Zr-in-rutile thermometry: a case study from ultrahigh-temperature granulites of the Khondalite belt, North China Craton. Contributions to Mineralogy and Petrology, 162(2), 379–393.

    Article  Google Scholar 

  • Jin, W. (1989). Geological evolution and metamorphic dynamics of early Precambrian basement rocks along the northern boundary (central section) of the North China Craton. Unpublished Ph.D. thesis. Changchun College of Geology, Changchun (in Chinese with English abstract).

    Google Scholar 

  • Jin, W., & Li, S.-X. (1994). The lithological association and geological features of early Proterozoic orogenic belt in Daqingshan, NeiMongol. In X.-L. Qian & R.-M. Wang (Eds.), Geological evolution of granulite facies zone in northern North China (pp. 32–41). Beijing: Sesimological Press. (in Chinese with English abstract).

    Google Scholar 

  • Jin, W., & Li, S.-X. (1996). PTt path and crustal thermodynamic model of late Archean-Early Proterozoic high-grade metamorphic terrain in North China. Acta Petrologica Sinica, 12(2), 42–55. (in Chinese with English abstract).

    Google Scholar 

  • Jin, W., Li, S.-X., & Liu, X.-S. (1991). A study on characteristics of early precambrian high-grade metamorphic rock series and their metamorphic dynamics. Acta Petrologica Sinica, 11(4), 27–35. (in Chinese with English abstract).

    Google Scholar 

  • Korhonen, F.-J., Saito, S., Brown, M., & Siddoway, C.-S. (2010). Modeling multiple melt loss events in the evolution of an active continental margin. Lithos, 116, 230–248.

    Article  Google Scholar 

  • Le Breton, N., & Thompson, A.-B. (1988). Fluid-absent (dehydration) melting of biotite in metapelites in the early stages of crustal anatexis. Contributions to Mineralogy and Petrology, 99, 226–237.

    Article  Google Scholar 

  • Li, X.-H., Chen, F.-K., Guo, J.-H., Li, Q.-L., Xie, L.-W., & Siebel, W.-F. (2007). South China provenance of the lower-grade Penglai Group north of the Sulu UHP orogenic belt, eastern China: Evidence from detrital zircon ages and Nd-Hf isotopic composition. Geochemical Journal, 41(1), 29–45.

    Article  Google Scholar 

  • Li, J.-H., Qian, X.-L., & Liu, S.-W. (1999). Geochemistry of the Khondalite series in the central North China Craton and implications for the crustal cratonization. Science in China (Series D), 29, 193–203.

    Google Scholar 

  • Li, S.-X., Xu, X.-C., Liu, X.-S., & Sun, Y.-D. (1994). Early precambrian geology of Wulashan region, Inner Mongolia. Geological Publishing House, Beijing (in Chinese with English abstract).

    Google Scholar 

  • Li, X.-P., Yang, Z.-Y., Zhao, G.-C., Grapes, R., & Guo, J.-H. (2011). Geochronology of khondalite-series rocks of the Jining Complex: Confirmation of depositional age and tectonometamorphic evolution of the North China craton. International Geology Review, 53, 1194–1211.

    Article  Google Scholar 

  • Li, S.-Z., & Zhao, G.-C. (2007). SHRIMP U-Pb zircon geochronology of the Liaoji granitoids: constraints on the evolution of the Paleoproterozoic Jiao-Liao-Ji belt in the Eastern Block of the North China Craton. Precambrian Research, 158, 1–16.

    Article  Google Scholar 

  • Liu, X.-S. (1994). Characteristics of basement reworked complex and implication for Daqingshan orogenic belt. Acta Pertologica Sinica, 10(4), 413–426. (in Chinese with English abstract).

    Google Scholar 

  • Liu, F.-L. (1995). Metamorphic minerals and fluid evolution and tectonic environment of granulite facies high-grade terrain in the Huai’an-Datong region. Unpublished Ph.D. thesis. Changchun College of Geology, Changchun (in Chinese with English abstract).

    Google Scholar 

  • Liu, X.-S. (1996). Progressive metamorphic genesis of Archean granulites in Central Nei Mongol. Acta Petrologica Sinica, 12(2), 121–132. (in Chinese with English abstract).

    Google Scholar 

  • Liu, S.-J., Dong, C.-Y., Xu, Z.-Y., Santosh, M., Ma, M.-Z., Xie, H.-Q., et al. (2013a). Palaeoproterozoic episodic magmatism and high-grade metamorphism in the North China Craton: evidence from SHRIMP zircon dating of magmatic suites in the Daqingshan area. Geological Journal, 48(5), 429–455.

    Article  Google Scholar 

  • Liu, X.-S., Jin, W., & Li, S.-X. (1993a). Low-pressure metamorphism of granulite facies in an Early Proterozoic orogenic event in Central Inner Mongolia. Acta Geologica Sinica, 6(1), 63–77.

    Google Scholar 

  • Liu, X.-S., Jin, W., Li, S.-X., & Xu, X.-C. (1993b). Two types of Precambrian high-grade metamorphism, Inner Mongolia, China. Journal of metamorphic Geology, 11(4), 499–510.

    Article  Google Scholar 

  • Liu, J.-H., Liu, F.-L., Ding, Z.-J., Liu, P.-H., Guo, C.-L., & Wang, F. (2014a). Geochronology, petrogenesis and tectonic implications of Paleoproterozoic granitoid rocks in the Jiaobei Terrane, North China Craton. Precambrian Research, 255, 685–698.

    Article  Google Scholar 

  • Liu, J.-H., Liu, F.-L., Ding, Z.-J., Liu, C.-H., Yang, H., Liu, P.-H., et al. (2013b). The growth, reworking and metamorphism of early Precambrian crust in the Jiaobei terrane, the North China Craton: Constraints from U-Th-Pb and Lu-Hf isotopic systematics, and REE concentrations of zircon from Archean granitoid gneisses. Precambrian Research, 224, 287–303.

    Article  Google Scholar 

  • Liu, P.-H., Liu, F.-L., Liu, C.-H., Liu, J.-H., Wang, F., Xiao, L.-L., et al. (2014b). Multiple mafic magmatic and high-grade metamorphic events revealed by zircons from meta-mafic rocks in the Daqingshan-Wulashan Complex of the Khondalite Belt, North China Craton. Precambrian Research, 246, 334–357.

    Article  Google Scholar 

  • Liu, J.-H., Liu, F.-L., Liu, P.-H., Wang, F., & Ding, Z.-J. (2011a). Polyphase magmatic and metamorphic events from early Precambriam metamorphic basement in Jiaobei area: Evidences from the zircon U-Pb dating of TTG and granitic gneisses. Acta Petrologica Sinica, 27(4), 943–960.

    Google Scholar 

  • Liu, P.-H., Liu, F.-L., Liu, C.-H., Wang, F., Liu, J.-H., Yang, H., et al. (2013c). Petrogenesis, P-T–t path, and tectonic significance of high-pressure mafic granulites from the Jiaobei terrane, North China Craton. Precambrian Research, 233, 237–258.

    Article  Google Scholar 

  • Liu, P.-H., Liu, F.-L., Wang, F., & Liu, J.-H. (2010). Genetic mineralogy and metamorphic evolution of mafic high-Pressure (HP) granulites from the Shandong Peninsula. China. Acta Petrologica Sinica, 26(7), 2039–2056. (in Chinese with English abstract).

    Google Scholar 

  • Liu, P.-H., Liu, F.-L., Wang, F., & Liu, J.-H. (2011b). U-Pb dating of zircons from Al-rich paragneisses of Jinshan Group in Shandong peninsula and its geological significance. Acta Petrologica Et Mineralogica, 30(5), 829–843. (in Chinese with English abstract).

    Google Scholar 

  • Liu, F.-L., Liu, P.-H., Wang, F., Liu, J.-H., Meng, E., Cai, J., & Shi, J.-R. (2014c). U-Pb dating of zircons from granitic leucosomes in migmatites of the Jiaobei Terrane, southwestern Jiao-Liao-Ji Belt, North China Craton: constraints on the timing and nature of partial melting. Precambrian Research, 245, 80–99.

    Article  Google Scholar 

  • Liu, P.-H., Liu, F.-L., Wang, F., Liu, C.-H., Yang, H., Liu, J.-H., et al. (2015). P-T-t paths of the multiple metamorphic events of the Jiaobei terrane in the southeastern segment of the Jiao-Liao-Ji Belt (JLJB), in the North China craton: Implication for formation and evolution of the JLJB. Acta Petrologica Sinica, 31(10), 2889–2941.

    Google Scholar 

  • Liu, P.-H., Liu, F.-L., Yang, H., Wang, F., & Liu, J.-H. (2012a). Protolith ages and timing of peak and retrograde metamorphism of the high pressure granulites in the Shandong Peninsula, eastern North China Craton. Geoscience Frontiers, 3(6), 923–943.

    Article  Google Scholar 

  • Liu, S.-J., Tsunogae, T., Li, W.-S., Shimizu, H., Santosh, M., Wan, Y.-S., & Li, J.-H. (2012b). Paleoproterozoic granulites from Heling’er: Implications for regional ultrahigh-temperature metamorphism in the North China Craton. Lithos, 148, 54–70.

    Article  Google Scholar 

  • Liu, W.-J., Zhai, M.-G., & Li, Y.-G. (1998). Metamorphism of the high-pressure basic granulite in Laixi, Eastern Shandong. China. Acta Petrologica Sinica, 14(4), 449–459. (in Chinese with English abstract).

    Google Scholar 

  • Lu, L.-Z., & Jin, S.-Q. (1993). P–T–t paths and tectonic history of an early Precambrian granulite facies terrane, Jining district, southeastern Inner Mongolia China. Journal of Metamorphic Geology, 11(4), 483–498.

    Google Scholar 

  • Lu, L.-Z., Jin, S.-Q., Xu, X.-C., & Liu, F.-L. (1992). Petrogenesis and mineralization of Khondalite Series in southeastern Inner Mongolia. Changchun (in Chinese with English abstract): Jilin Science and Technology Press.

    Google Scholar 

  • Lu, X.-P., Wu, F.-Y., Guo, J.-H., Wilde, S.-A., Yang, J.-H., Liu, X.-M., & Zhang, X.-O. (2006). Zircon U-Pb geochronological constraints on the Paleoproterozoic crustal evolution of the Eastern block in the North China Craton. Precambrian Research, 146(3–4), 138–164.

    Article  Google Scholar 

  • Lu, L.-Z., Xu, X.-C., & Liu, F, -L. (1996). Early precambrian khondalite series in North China. Changchun Publishing House, Changchun (in Chinese with English abstract).

    Google Scholar 

  • Luo, Y., Sun, M., Zhao, G.-C., Li, S.-Z., Ayers, J.-C., Xia, X.-P., & Zhang, J.-H. (2008). A comparison of U-Pb and Hf isotopic compositions of detrital zircons from the North and South Liaohe Groups: constraints on the evolution of the Jiao-Liao-Ji Belt, North China Craton. Precambrian Research, 163, 279–306.

    Article  Google Scholar 

  • Luo, Y., Sun, M., Zhao, G.-C., Li, S.-Z., Xu, P., Ye, K., & Xia, X.-P. (2004). LA-ICP-MS U-Pb zircon ages of the Liaohe Group in the Eastern Block of the North China Craton: constraints on the evolution of the Jiao-Liao-Ji Belt. Precambrian Research, 134, 349–371.

    Article  Google Scholar 

  • Ma, M.-Z., Wan, Y.-S., Santosh, M., Xu, Z.-Y., Xie, H.-Q., Dong, C.-Y., et al. (2012a). Decoding multiple tectonothermal events in zircons from single rock samples: SHRIMP zircon U-Pb data from the late Neoarchean rocks of Daqingshan. North China Craton. Gondwana Research, 22(3–4), 810–827.

    Article  Google Scholar 

  • Ma, M.-Z., Wan, Y.-S., Xu, Z.-Y., Liu, S.-J., Xie, H.-Q., Dong, C.-Y., & Liu, D.-Y. (2012b). Late Paleoproterozoic K-feldspar pegmatite veins in Daqingshan area, North China Craton: SHRIMP age and Hf composition of zircons. Geological Bulletin of China, 31(6), 825–833. (in Chinese with English abstract).

    Google Scholar 

  • Maynard, J.-B., Valloni, R., & Yu, H.-S. (1982). Composition of modern deep-sea sands from arc-related basins. Geological Society, London, Special Publications, 10(1), 551–561.

    Article  Google Scholar 

  • McLennan, S.-M., & Taylor, S.-R. (1991). Sedimentary rocks and crustal evolution: tectonic setting and secular trends. Journal of Geology, 99, 1–21.

    Article  Google Scholar 

  • McLennan, S.-M., Taylor, S.-R., McCulloch, M.-T., & Maynard, J.-B. (1990). Geochemical and Nd–Sr isotopic composition of deep-sea turbidites: crustal evolution and plate tectonic associations. Geochimica et Cosmochimica Acta, 43, 375–388.

    Article  Google Scholar 

  • Miao, L.-C., Luo, Z.-K., Guan, K., & Huang, J.-Z. (1998). The implications of the SHRIMP U-Pb age in zircon to the petrogenesis of the Linglong granite. East Shandong Province. Acta Petrologica Sinica, 14(2), 198–206. (in Chinese with English abstract).

    Google Scholar 

  • Miao, L.-C., Qiu, Y.-M., Guan, K., McNaughton, N., Qiu, Y.-S., Luo, Z.-K., & Groves, D. (2001). A chronological study of SHRIMP U-Pb of zircon from the Dahuabei intrusion in the Wulashan area. Inner Mongolia. Geological Review, 47(2), 169–174. (in Chinese with English abstract).

    Google Scholar 

  • Miyashiro, A. (1961). Evolution of Metamorphic Belts. Journal of Petrology, 2(3), 277–311.

    Article  Google Scholar 

  • Narayanaswami, S. (1975). Proposal for charnockite-khondalite system in the Archaean shield of Peninsular India. In “precambrian geology of peninsular India”. Geology. Survey India Miscellneous Publ., 23, 1–16.

    Google Scholar 

  • O’Brien, P.-J., & Rötzler, J. (2003). High-pressure granulites: formation, recovery of peak conditions and implications for tectonics. Journal of Metamorphic Geology, 21(1), 3–20.

    Article  Google Scholar 

  • Patiño Douce, A.-E., & Johnston, A.-D. (1991). Phase equilibria and melt productivity in the pelitic system: Implications for the origin of peraluminous granitoids and aluminous granulites. Contributions to Mineralogy and Petrology, 107, 202–218.

    Article  Google Scholar 

  • Philpotts, A.-R. (1989). Rock-forming minerals and their optical properties. In Petrography of Igneous and Metamorphic Rocks (pp. 43–46).

    Google Scholar 

  • Powell, R., & Holland, T.-J.-B. (1988). An internally consistent dataset with uncertainties and correlations, pp 3 applications to geobarometry, worked examples and a computer program. Journal of Metamorphic Geology, 6, 173–204.

    Google Scholar 

  • Qian, X.-L., & Li, J.-H. (1999). The discovery of NeoArchaean unconformity and its implication for continental cratonization of the North China Craton. Sciences in China (Series D), 42, 401–407.

    Google Scholar 

  • Roser, B.-P., & Korsch, R.-J. (1986). Determination of tectonic setting of sandstone-mudstone suites using SiO2 content and K2O/Na2O ratio. Journal of Geology, 94, 635–650.

    Article  Google Scholar 

  • Salje, E. (1986). Heat capacities and entropies of andalusite and sillimanite; the influence of fibrolitization on the phase diagram of the Al2SiO5 polymorphs. American Mineralogist, 71(11–12), 1366–1371.

    Google Scholar 

  • Santosh, M., Sajeev, K., Li, J.-H., Liu, S.-J., & Itaya, T. (2009). Counterclockwise exhumation of a hot orogen: The paleoproterozoic ultrahigh-temperature granulites in the North China Craton. Lithos, 110, 140–152.

    Article  Google Scholar 

  • Santosh, M., Tsunogae, T., Li, J.-H., & Liu, S.-J. (2007). Discovery of sapphirine-bearing Mg-Al granulites in the North China Craton: Implications for Paleoproterozoic ultrahigh temperature metamorphism. Gondwana Research, 11, 263–285.

    Article  Google Scholar 

  • Schliestedt, M., & Johannes, W. (1984). Melting and subsolidus reactions in the system K2O-CaO-Al2O3-SiO2-H2O: Corrections and additional experimental data. Contributions to Mineralogy and Petrology, 88, 403–405.

    Article  Google Scholar 

  • Shackleton, R.-M. (1976). Shallow and deep-level exposures of the Archean crust in India and Africa. In B. F. Windley (Ed.), The Early history of the earth (pp. 317–321). London: Wiley.

    Google Scholar 

  • Simonen, A. (1953). Stratigraphy and sedimentation of the Svecofennidie, early Archean supracrustal rocks in southwestern Finland. Bulletin of the Geological Society of Finland, 160, 1–64.

    Google Scholar 

  • Spear, F.-S., Hickmott, D.-D., & Selverstone, J. (1990). Metamorphic consequences of thrust emplacement, Fall Mountain, New Hampshire. Geological Society of America Bulletin, 102, 1344–1360.

    Article  Google Scholar 

  • Spear, F.-S., Kohn, M.-J., & Cheney, J.-T. (1999). P-T paths from anatectic pelites. Contributions to Mineralogy and Petrology, 134, 17–32.

    Article  Google Scholar 

  • Spear, F.-S., Kohn, M.-J., & Paetzold, S. (1995). Petrology of the regional sillimanite zone, west-central New Hampshire, U.S.A., with implications for the development of inverted isograds. American Mineralogist, 80, 361–376.

    Article  Google Scholar 

  • Sun, S.-S., & McDonough, W.-F. (1989). Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geological Society, London, Special Publications, 42, 313–345.

    Article  Google Scholar 

  • Tam, P.-Y., Zhao, G.-C., Liu, F.-L., Zhou, X.-W., Sun, M., & Li, S.-Z. (2011). Timing of metamorphism in the Paleoproterozoic Jiao-Liao-Ji Belt: New SHRIMP U-Pb zircon dating of granulites, gneisses and marbles of the Jiaobei massif in the North China Craton. Gondwana Research, 19(1), 150–162.

    Article  Google Scholar 

  • Tam, P.-Y., Zhao, G.-C., Sun, M., Li, S.-Z., Iizuka, Y.-Y., Ma, G.-S.-K., et al. (2012a). Metamorphic PT path and tectonic implications of medium-pressure pelitic granulites from the Jiaobei massif in the Jiao-Liao-Ji Belt, North China Craton. Precambrian Research, 220–221, 177–191.

    Article  Google Scholar 

  • Tam, P.-Y., Zhao, G.-C., Sun, M., Li, S.-Z., Wu, M.-L., & Yin, C.-Q. (2012b). Petrology and metamorphic PT path of high-pressure mafic granulites from the Jiaobei massif in the Jiao-Liao-Ji Belt, North China Craton. Lithos, 155, 94–205.

    Article  Google Scholar 

  • Tam, P.-Y., Zhao, G.-C., Zhou, X.-W., Sun, M., Guo, J.-H., Li, S.-Z., et al. (2012c). Metamorphic P-T path and implications of high-pressure pelitic granulites from the Jiaobei massif in the Jiao-Liao-Ji Belt. North China Craton. Gondwana Research, 22(1), 104–117.

    Article  Google Scholar 

  • Tang, J., Zheng, Y.-F., Wu, Y.-B., Gong, B., & Liu, X.-M. (2007). Geochronology and geochemistry of metamorphic rocks in the Jiaobei terrane: Constraints on its tectonic affinity in the Sulu orogen. Precambrian Research, 152(1–2), 48–82.

    Article  Google Scholar 

  • Taylor, S.-R., & McLennan, S.-M. (1985). The continental crust: its composition and evolution (p. 312). Oxford, UK: Blackwell Scientific Publications.

    Google Scholar 

  • Thompson, A.-B., & England, P.-C. (1984). Pressure–temperature–time paths of regional metamorphism II. Their inference and interpretation using mineral assemblages in metamorphic rocks. Journal of Petrology, 25, 929–955.

    Article  Google Scholar 

  • Tsunogae, T., Liu, S.-J., Santosh, M., Shimizu, H., & Li, J.-H. (2011). Ultrahigh-temperature metamorphism in Daqingshan, Inner Mongolia Suture Zone. North China Craton. Gondwana Research, 20(1), 36–47.

    Article  Google Scholar 

  • Vielzeuf, D., & Montel, J.-M. (1994). Partial melting of metagreywackes. Part I. Fluid-absent experiments and phase relationships. Contributions to Mineralogy and Petrology, 117, 375–393.

    Article  Google Scholar 

  • Walker, T.-L. (1902). The geology of Kalahandi State, Central Province. Memoirs of the Geological Survey of India, 33(3), 1–23.

    Google Scholar 

  • Wan, Y.-S., Geng, Y.-S., Liu, F.-L., Shen, Q.-H., Liu, D.-Y., & Song, B. (2000a). Age and composition of the khondalite series of the North China Craton and its adjacent area. Prog. Precambrian Res., 23, 221–235. (in Chinese with English abstract).

    Google Scholar 

  • Wan, Y.-S., Geng, Y.-S., Shen, Q.-H., & Zhang, R.-X. (2000b). Khondalite series—geochronology and geochemistry of the Jiehekou Group in Lüliang area. Acta Petrologica Sinica, 16, 49–58. (in Chinese with English abstract).

    Google Scholar 

  • Wan, Y.-S., Liu, D.-Y., Dong, C.-Y., Liu, S.-J., Wang, S.-J., & Yang, E.-X. (2011). U-Th-Pb behavior of zircons under high-grade metamorphic conditions: A case study of zircon dating of meta-diorite near Qixia, eastern Shandong. Geoscience Frontiers, 2(2), 37–146.

    Article  Google Scholar 

  • Wan, Y.-S., Liu, D.-Y., Dong, C.-Y., Xu, Z.-Y., Wang, Z.-J., Wilde, S.-A., et al. (2009). The Precambrian Khondalite Belt in the Daqingshan area, North China Craton: Evidence for multiple metamorphic events in the palaeoproterozoic era. Geological Society, London, Special Publications, 323(1), 73–97.

    Article  Google Scholar 

  • Wan, Y.-S., Song, B., Liu, D.-Y., Wilde, S.-A., Wu, J.-S., Shi, Y.-R., et al. (2006). SHRIMP U-Pb zircon geochronology of palaeoproterozoic metasedimentary rocks in the North China craton: Evidence for a major late palaeoproterozoic tectonothermal event. Precambrian Research, 149(3–4), 249–271.

    Article  Google Scholar 

  • Wan, Y.-S., Xie, H.-Q., Yang, H., Wang, Z.-J., Liu, D.-L., Kröner, A., et al. (2013a). Is the Ordos Block Archean or Paleoproterozoic in age? Implications for the Precambrian evolution of the North China Craton. American Journal of Science, 313, 683–711.

    Article  Google Scholar 

  • Wan, Y.-S., Xu, Z.-Y., Dong, C.-Y., Nutman, A., Ma, M.-Z., Xie, H.-Q., et al. (2013b). Episodic Paleoproterozoic (~2.45, ~1.95 and ~1.85 Ga) mafic magmatism and associated high temperature metamorphism in the Daqingshan area, North China Craton: SHRIMP zircon U-Pb dating and whole-rock geochemistry. Precambrian Research, 224, 71–93.

    Article  Google Scholar 

  • Wang, P.-C. (1995). New knowledge on the research about the relationships between the Fenzishan Group and Jingshan Group. Journal of Stratigraphy, 19(1), 77–78 (in Chinese)

    Google Scholar 

  • Wang, R.-M., He, G.-P., Chen, Z.-Z., Zhen, S.-Y., & Geng, Y.-S. (1987). Graphic discrimination method of metamorphic protoliths. Geological Publishing House, Beijing (in Chinese).

    Google Scholar 

  • Wang, F., Liu, F.-L., Liu, P.-H., & Liu, J.-H. (2010). Metamorphic evolution of early Precambrian khondalite series in North Shangdong Province. Acta Petrologica Sinica, 26(7), 2057–2072.

    Google Scholar 

  • Wang, L.-G., Qiu, Y.-M., McNaughton, N.-J., Groves, D.-I., Luo, Z.-K., Huang, J.-Z., et al. (1998). Constraints on crustal evolution and gold metallogeny in the Northwestern Jiaodong Peninsula, China, from SHRIMP U-Pb zircon studies of granitoids. Ore Geology Reviews, 13(1), 275–291.

    Article  Google Scholar 

  • Wei, C.-J., Clarke, G., Tian, W., & Qiu, L. (2007). Transition of metamorphic series from the Kyanite- to andalusite-types in the Altai orogen, Xinjiang, China: Evidence from petrography and calculated KMnFMASH and KFMASH phase relations. Lithos, 96, 353–374.

    Article  Google Scholar 

  • Wei, C.-J., Powell, R., & Clarke, G.-L. (2004). Calculated phase equilibria for low- and medium-pressure metapelites in the KFMASH and KMnFMASH systems. Journal of Metamorphic Geology, 22, 495–508.

    Article  Google Scholar 

  • Wei, C.-J., Powell, R., & Zhang, L.-F. (2003). Eclogites from the south Tianshan, NW China: petrological characteristic and calculated mineral equilibria in the Na2O-CaO-FeO-MgO-Al2O3-SiO2-H2O system. Journal of Metamorphic Geology, 21, 163–179.

    Article  Google Scholar 

  • Wei, C.-J., Qian, J.-H., & Zhou, X.-W. (2014). Paleoproterozoic crustal evolution of the Hengshan-Wutai-Fuping redion, North China craton. Geoscience Frontiers, 5(4), 265–485.

    Article  Google Scholar 

  • White, R.-W., Powell, R., & Clarke, G.-L. (2002). The interpretation of reaction textures in Fe-rich metapelitic granulites of the Musgrave Block, central Australia: Constraints from mineral equilibria calculations in the system K2O-FeO-MgO-Al2O3-SiO2-H2O-TiO2-Fe2O3. Journal of Metamorphic Geology, 20, 41–55.

    Article  Google Scholar 

  • White, R.-W., Powell, R., & Clarke, G.-L. (2003). Prograde metamorphic assemblage evolution during partial melting of metasedimentary rocks at low pressures: Migmatites from Mt Stafford, Central Australia. Journal of Petrology, 44, 1937–1960.

    Article  Google Scholar 

  • White, R.-W., Powell, R., & Holland, T.-J.-B. (2001). Calculation of partial melting equilibria in the system Na2O-CaO-K2O-FeO-MgO-Al2O3-SiO2-H2O (NCKFMASH). Journal of Metamorphic Geology, 19, 139–153.

    Article  Google Scholar 

  • White, R.-W., Powell, R., & Holland, T.-J.-B. (2007). Progress relating to calculation of partial melting equilibria for metapelites. Journal of Metamorphic Geology, 25, 511–527.

    Article  Google Scholar 

  • White, R.-W., Powell, R., Holland, T.-J.-B., & Worley, B.-A. (2000). The effect of TiO2 and Fe2O3 on metapelitic assemblages at greenschist and amphibolite facies conditions: Mineral equilibria calculations in the system K2O-FeO-MgO-Al2O3-SiO2-H2O-TiO2-Fe2O3. Journal of Metamorphic Geology, 18, 497–511.

    Article  Google Scholar 

  • Whitney, D.-L., & Evans, B.-W. (2010). Abbreviations for names of rock-forming minerals. American Mineralogist, 95(1), 185–187.

    Google Scholar 

  • Wu, C.-H., Sun, M., Li, H.-M., Zhao, G.-C., & Xia, X.-P. (2006). LA-ICP-MS U-Pb zircon ages of the khondalites from the Wulashan and Jining high-grade terrain in northern margin of the North China Craton: Constraints on sedimentary age of khondalite. Acta Petrologica Sinica, 22(11), 2639–2654.

    Google Scholar 

  • Xia, X.-P., Sun, M., Zhao, G.-C., & Luo, Y. (2006a). LA–ICP–MS U–Pb geochronology of detrital zircons from the Jining Complex, North China Craton and its tectonic significance. Precambrian Research, 144(3), 199–212.

    Google Scholar 

  • Xia, X.-P., Sun, M., Zhao, G.-C., Wu, F.-Y., Xu, P., Zhang, J.-P., et al. (2006b). U–Pb and Hf isotopic study of detrital zircons from the Wulashan khondalites: Constraints on the evolution of the Ordos Terrane, Western Block of the North China Craton. Earth and Planetary Science Letters, 241(3), 581–593.

    Google Scholar 

  • Xie, S.-Y., Qie, H.-Q., Wang, S.-J., Kröner, A., Liu, S.-J., Zhou, H.-Y., et al. (2014). Ca. 2.9 Ga granitoid magmatism in eastern Shandong, North China craton: Zircon dating, Hf-in-zircon isotopic analysis and whole-rock geochemistry. Precambrian Research, 255, 534–562.

    Article  Google Scholar 

  • Xu, Z.-Y., Liu, Z.-H., & Yang, Z.-S. (2003). The discoverty of Zaoergou angular uncomformity and estalishment of Meidaizhao Group-complex in Daqing Mountains, Inner Mongolia-Paleaoproterzoic Low-grade metamorphic strata on the Khondalite series. Geologica Bulletin of China, 22(7), 480–486. (in Chinese with English abstract).

    Google Scholar 

  • Xu, Z.-Y., Liu, Z.-H., & Yang, Z.-S. (2005a). Structures of early metamorphic strata in the khondalite series in the Daqingshan-Wulashan area. Inner Mongolia: Jouranl of stratigraphy, 29(S1), 423–432. (in Chinese with English abstract).

    Google Scholar 

  • Xu, Z.-Q., Qi, X.-X., Liu, F.-L., Yang, J.-S., Zeng, L.-S., & Wu, C.-L. (2005b). A new Caledonian khondalites in West Kunlun, China: age constraints and tectonic significance. International Geology Review, 47, 986–998.

    Article  Google Scholar 

  • Yang, K.-F., Fan, H.-R., Santosh, M., Hu, F.-F., Wilde, S.-A., Lan, T.-G., et al. (2012). Reactivation of the Archean lower crust: Implications for zircon geochronology, elemental and Sr-Nd-Hf isotopic geochemistry of late Mesozoic granitoids from northwestern Jiaodong Terrane, the North China Craton. Lithos, 146–147, 12–127.

    Google Scholar 

  • Yang, Z.-S., Xu, Z.-Y., & Liu, Z.-H. (2000). Khondalite event and Archean crust structure evolvement. Progress in Precambrian Research, 23(4), 206–212. (in Chinese with English abstract).

    Google Scholar 

  • Yang, Z.-S., Xu, Z.-Y., Liu, Z.-H., & Wang, S.-L. (2006). Major progress in Early Precambrian research in the Daqingshan–Wulashan region, central Inner Mongolia, China, and some suggestions for stratigraphic work in high-grade metamorphic areas. Geological Bulletin of China, 25(4), 427–433 (in Chinese with English abstract)

    Google Scholar 

  • Yang, Z.-S., Xu, Z.-Y., Liu, Z.-H., & Gu, X.-D. (2003). Consideration and practice of construction of litho stratigraphic systems in high-grade metamorphic terrains-acase study in the Daqingshan-Wulashan area. Geology in China, 30(4), 343–351. (in Chinese with English abstract).

    Google Scholar 

  • Yin, C.-Q. (2010). Metamorphism of the Qianlishan-Helanshan Complex and its implications for tectonic evolution of the Khondalite Belt in the Western Block, North China Craton. Unpublished Ph.D. thesis. The University of Hong Kong, Hong Kong.

    Google Scholar 

  • Yin, A., & Nie, S. (1996). Phanerozoic palinspastic reconstruction of China and its neighboring regions. In A. Yin & T. M. Harrison (Eds.), The Tectonic Evolution of Asia (pp. 285–442). New York: Cambridge University Press.

    Google Scholar 

  • Yin, C.-Q., Zhao, G.-C., Guo, J.-H., Sun, M., Xia, X.-P., Zhou, X.-W., & Liu, C.-H. (2011). U-Pb and Hf isotopic study of zircons of the Helanshan complex: Constrains on the evolution of the Khondalite Belt in the Western Block of the North China Craton. Lithos, 122(3–4), 25–38.

    Article  Google Scholar 

  • Yin, C.-Q., Zhao, G.-C., Sun, M., Xia, X.-P., Wei, C.-J., Zhou, X.-W., & Leung, W.-H. (2009). LA-ICP-MS U-Pb zircon ages of the Qianlishan complex: Constrains on the evolution of the Khondalite Belt in the western block of the North China craton. Precambrian Research, 174(1–2), 78–94.

    Article  Google Scholar 

  • Yin, C.-Q., Zhao, G.-C., Wei, C.-J., Sun, M., Guo, J.-H., & Zhou, X.-W. (2014). Metamorphism and partial melting of high-pressure pelitic granulites from the Qianlishan complex: Constraints on the tectonic evolution of the Khondalite Belt in the North China craton. Precambrian Research, 242, 172–186.

    Article  Google Scholar 

  • Yu, H.-F. (1994). High temperature deformational-metamorphic zone and Early Proterozoic inner continental orogeny. Unpublished Ph.D. thesis. Changchun College of Geology, Changchun (in Chinese with English abstract).

    Google Scholar 

  • Zeng, L.-S., Liang, F.-H., Xu, Z.-Q., & Qi, X.-X. (2008). Metapelites in the Himayan oregenic belt and their protoliths. Acta Pertologica Sinica, 24, 1517–1527. (in Chinese with English abstract).

    Google Scholar 

  • Zhang, Y.-M. (2012). Metallogenesis, Ore-controlling factors and prospecting direction of the Liubagou-Hadamengou gold deposit, Inner Mongolia. Unpublished Ph.D. thesis. China University of Geosciences (Beijing) (in Chinese with English abstract).

    Google Scholar 

  • Zhang, X.-O., Cawood, P.-A., Wilde, S.-A., Liu, R.-Q., Song, H.-L., Li, W., & Snee, L.-W. (2003). Geology and timing of mineralization at the Cangshang gold deposit, north-western Jiaodong Peninsula, China. Mineralium deposita, 38(2), 141–153.

    Google Scholar 

  • Zhang, Q.-S, Yang, S.-Z., & Liu, L.-D. (1988). Early crust and ore deposits in the Eastern Liaoning Peninsula (pp. 218–322). Beijing: Geological Publishing House (in Chinese).

    Google Scholar 

  • Zhao, G.-C., Sun, M., Wilde, S.-A., & Li, S.-Z. (2005). Late archean to paleoproterozoic evolution of the North China craton: Key issues revisited. Precambrian Research, 136, 177–202.

    Article  Google Scholar 

  • Zhao, L., Tiesheng Li, T.-S., Peng, P., Guo, J.-H., Wang, W., Wang, H.-Z., et al. (2014). Anatomy of zircon growth in high pressure granulites: SIMS U–Pb geochronology and Lu–Hf isotopes from the Jiaobei Terrane, eastern North China Craton. Gondwana Research, doi: 10.1016/j.gr.2014.10.009.

    Google Scholar 

  • Zhao, G.-C., Wilde, S.-A., Cawood, P.-A., & Lu, L.-Z. (1999). Tectonothermal history of the basement rocks in the western zone of the North China craton and its tectonic implications. Tectonophysics, 310(1), 37–53.

    Article  Google Scholar 

  • Zhou, X.-W., & Geng, Y.-S. (2009). Metamorphic age of the khondalite series in the Helanshan region: Constraints on the evolution of the western block in the North China Craton. Acta Pertologica Sinica, 25(8), 1843–1852.

    Google Scholar 

  • Zhou, X.-W., Wei, C.-J., Geng, Y.-S., & Zhang, L.-F. (2004). Discovery and implications of the high-pressure pelitic granulites from the Jiaobei massif. Chinese Science Bulletin, 49(14), 1942–1948.

    Article  Google Scholar 

  • Zhou, J.-B., Wilde, S.-A., Zhao, G.-C., Zheng, C.-Q., Jin, W., Zhang, X.-Z., & Cheng, H. (2008a). SHRIMP U-Pb zircon dating of the Neoproterozoic Penglai Group and Archean gneisses from the Jiaobei Terrane, North China, and their tectonic implications. Precambrian Research, 160(3–4), 323–340.

    Article  Google Scholar 

  • Zhou, X.-W., Zhao, G.-C., & Geng, Y.-S. (2010). Helanshan high pressure pelitic granulite: Petrologic evidence for collision event in the western block of the North China Craton. Acta Petrologica Sinica, 26, 2113–2121.

    Google Scholar 

  • Zhou, X.-W., Zhao, G.-C., Wei, C.-J., Geng, Y.-S., & Sun, M. (2008b). EPMA U-Th-Pb monazite and SHRIMP U-Pb zircon geochronology of high-pressure pelitic granulites in the Jiaobei massif of the North China Craton. American Journal of Science, 308(3), 328–350.

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to the members of the Research Department of Metamorphic and Precambrian Geology, Institute of Geology, Chinese Academy of Geological Sciences for the original manuscript preparation. We also thank Mingguo Zhai, Qihan Shen, Jinghui Guo, Guochun Zhao, Peng Peng, Lingling Xiao, Chaohui Liu, Fang Wang, and others for discussions and support during this research. We are particularly grateful to Academician Mingguo Zhai for originating this special issue. This paper presents a summary of the results of current and previous long-term studies in the Paleoproterozoic mobile belts in North China Craton, supported financially by the National Natural Science Foundation of China (41430210, 41372069, 41302153), the Major State Basic Research Program of the People’s Republic of China (2012CB416603), and the China Geological Survey Project (DD20160121, 12120114061901, 1212011120150).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fu-Lai Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Liu, FL., Liu, PH., Cai, J. (2016). Genetic Mechanism and Metamorphic Evolution of Khondalite Series Within the Paleoproterozoic Mobile Belts, North China Craton. In: Zhai, M., Zhao, Y., Zhao, T. (eds) Main Tectonic Events and Metallogeny of the North China Craton. Springer Geology. Springer, Singapore. https://doi.org/10.1007/978-981-10-1064-4_8

Download citation

Publish with us

Policies and ethics