Skip to main content

Neoarchean Banded Iron Formations in the North China Craton: Geology, Geochemistry, and Its Implications

  • Chapter
  • First Online:
Main Tectonic Events and Metallogeny of the North China Craton

Part of the book series: Springer Geology ((SPRINGERGEOL))

Abstract

The distribution of Banded iron formations (BIFs) in the North China Craton (NCC) has some obvious characteristics. Large-scale BIFs and BIF-type iron deposits occur mainly in greenstone belts area such as Anshan-Benxi, eastern Hebei, Wutai, Guyang, western Shandong and Huoqiu; formation ages of BIFs in NCC show a wide range spanning from Mesoarchean to early Paleoproterozoic, with a peak in the late Neoarchean (2.6–2.5 Ga); BIFs can be divided into two types, Algoma-type and Superior Lake-type, most BIFs occurring in Neoarchean greenstone belts in NCC belong to the former, whereas only the Paleoproterozoic Yuanjiacun BIF in the Lüliang area has typical characteristics similar to Superior-type BIFs. The Neoarchean BIFs are mainly distributed in paleo-intracratonic basins and/or their margins. The BIFs can be developed in either marine volcanic-sedimentary environment or submarine exhalation sedimentary environment, either shallow marine clastic sedimentary environment or marine clastic-carbonate transition environment. All the BIFs in NCC experienced relatively high-grade metamorphism and strong deformation, forming most sedimentary metamorphic iron deposits with magnetite as a major economic mineral. Large amounts of geochemistry results of the Neoarchean BIFs in NCC show that the BIFs are composed predominantly of SiO2 + Fe2O T3 , and the contents of Al2O3, TiO2, K2O, Na2O, MnO, and P2O5 are very low, suggesting that BIFs belong to typical chemical sedimentary rocks. The Post-Archean Australian Shale-normalized REY patterns of the BIFs display an enrichment in heavy rare earth elements with positive La, Eu, and Y anomalies, indicating that the primary chemical precipitate is a result of solutions that represent mixtures of seawater and high-temperature hydrothermal fluids. The ε Nd(2.55 Ga) values (3.0–4.5) in Anshan-Benxi BIFs are close to those of the coeval depleted mantle, implying that the iron was most likely derived from the hydrothermal leaching of oceanic mafic crusts; the ε Nd(2.55 Ga) values (2.89 to −2.58) in the Wutai and E. Hebei BIFs suggest that the iron sources are mixing oceanic crusts and continental crusts. At the same time, the BIFs lack negative Ce anomalies with consistently positive δ56Fe values (0.12–1.87 ‰), which suggest that they formed in a low-oxygen or anoxia environment. A possible tectonic setting where the NCC BIFs and associated supra crustal rocks form is a back-arc basin or island arc related to a subducted ocean slab.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alexander, B. W., Bau, M., Andersson, P., & Dulski, P. (2008). Continentally-derived solutes in shallow Archean seawater: rare earth element and Nd isotope evidence in iron formation from the 2.9 Ga Pongola Supergroup, South Africa. Geochimica et Cosmochimica Acta, 72, 378–394.

    Article  Google Scholar 

  • Alibo, D. S., & Nozaki, Y. (1999). Rare earth elements in seawater: Particle association, shale-normalization, and Ce oxidation. Geochimica et Cosmochimica Acta, 63, 363–372.

    Article  Google Scholar 

  • Anbar, A. D., & Rouxel, O. (2007). Metal stable isotopes in paleoceanography. Annual Review of Earth and Planetary Sciences, 35, 717–746.

    Article  Google Scholar 

  • Bau, M., & Dulski, P. (1996). Distribution of yttrium and rare-earth elements in the Penge and Kuruman iron formations, Transvaal Supergroup, South Africa. Precambrian Research, 79, 37–55.

    Article  Google Scholar 

  • Bau, M., & Dulski, P. (1999). Comparing yttrium and rare earths in hydrothermal fluids from the Mid-Atlantic Ridge: Implications for Y and REE behaviour during near-vent mixing and for the Y/Ho ratio of Proterozoic seawater. Chemical Geology, 155, 77–90.

    Article  Google Scholar 

  • Bekker, A., Planavsky, N. J., Krapež, B., Rasmussen, B., Hofmann A., Slack, J. F., et al. (2013). Iron formation: Their origins and implications for ancient seawater chemistry. In F. T. Mackenzie (Eds.), Sediments, diagenesis, and sedimentary rocks: Treatise on geochemistry (2nd ed., Paper 7, pp. 561–628). Amsterdam: Elsevier.

    Google Scholar 

  • Bekker, A., Slack, J. F., Planavsky, N., Krapez, B., Hofmann, A., Konhauser, K. O., et al. (2010). Iron formation: The sedimentary product of a complex interplay among mantle, tectonic, oceanic and biospheric processes. Economic Geology, 105, 467–508.

    Article  Google Scholar 

  • Beukes, N. J., & Gutzmer, J. (2008). Origin and paleoenvironmental significance of major iron formations at the Archean-Paleoproterozoic boundary. Reviews in Economic Geology, 15, 5–47.

    Google Scholar 

  • Bolhar, R., Kamber, B. S., Moorbath, S., Fedo, C. M., & Whitehouse, M. J. (2004). Characterisation of early Archaean chemical sediments by trace element signatures. Earth and Planetary Science Letters, 222, 43–60.

    Article  Google Scholar 

  • Cui, M.-L., Zhang, L.-C., Wu, H.-Y., Xu, Y.-X., & Li, W.-J. (2014). Timing and tectonic setting of the Sijiaying banded iron deposit in the eastern Hebei province, North China Craton: Constraints from geochemistry and SIMS zircon U-Pb dating. Journal of Asian Earth Sciences, 94, 240–251.

    Article  Google Scholar 

  • Dai, Y.-P., Zhang, L.-C., Wang, C.-L., Liu, L., Cui, M.-L., Zhu, M.-T., et al. (2012). Genetic type, formation age and tectonic setting of the Waitoushan banded iron formation, Benxi, Liaoning Province. Acta Petrologica Sinica, 28, 3574–3594. (in Chinese with English abstract).

    Google Scholar 

  • Dai, Y.-P., Zhang, L.-C., Zhu, M.-T., Wang, C.-L., &Liu, L. (2013). Chengtaigou BIF-type iron deposit, Anshan area associated with Archean crustal growth: constraints from zircon U-Pb dating and Hf isotopes. Acta Petrologica Sinica, 29, 2537–2550 (in Chinese with English abstract).  

    Google Scholar 

  • Dai, Y.-P., Zhang, L.-C., Zhu, M.-T., Wang, C.-L., Liu, L., & Xiang, P. (2014). The composition and genesis of the Mesoarchean Dagushan banded iron formation (BIF) in the Anshan area of the North China Craton. Ore Geology Review, 63, 353–373.

    Article  Google Scholar 

  • Geng, Y.-S., Liu, F.-L., & Yang, C.-H. (2006). Magmatic event at the end of the Archean in eastern Hebei Province and its geological implication. Acta Geologica Sinica, 80, 819–833.

    Google Scholar 

  • Goodwin, A. M. (1973). Archean iron-formation and tectonic basins of the Canadian Shield. Economic Geology, 68, 915–933.

    Article  Google Scholar 

  • Gross, G. A. (1980). A classification of iron formations based on depositional environments. Canadian Mineralogist, 18, 215–222.

    Google Scholar 

  • Gross, G. A. (1983). Tectonic systems and the deposition of iron-formation. Precambrian Research, 20(2–4), 171–187.

    Article  Google Scholar 

  • Gross, G. A., & McLeod, C. R. (1980). A preliminary assessment of the chemical composition of iron formations in Canada. Canadian Mineralogist, 16(2), 223–229.

    Google Scholar 

  • Guo, J.-H., Sun, M., Chen, F.-K., & Zhai, M.-G. (2005). Sm-Nd and SHRIMP U-Pb zircon geochronology of high pressure granulites in the Sanggan area, North China Craton: Timing of Paleoproterozoic continental collision. Journal of Asian Earth Sciences, 24, 629–642.

    Article  Google Scholar 

  • Harley, S. L., Kelly, N. M., & Móller, A. (2007). Zircon behaviour and the thermal histories of mountain chains. Elements, 3, 25–30.

    Article  Google Scholar 

  • Heimann, A., Johnson, C. M., Beard, B. L., Valley, J. W., Roden, E. E., Spicuzza, M. J., & Beukes, N. J. (2010). Fe, C, and O isotope compositions of banded iron formation carbonates demonstrate a major role for dissimilatory iron reduction in ~2.5 Ga marine environments. Earth and Planetary Science Letters, 294, 8–18.

    Article  Google Scholar 

  • Hoskin, P. W. O., & Schaltegger, U. (2003). The composition of zircon and igneous and metamorphic petrogenesis. Reviews in Mineralogy Geochemistry, 53, 27–62.

    Article  Google Scholar 

  • Huang, H. (2014). The mineralization age, forming environment and genesis of Huoqiu BIF iron deposit in southern margin of the North China Craton (pp. 1–117) (Ph.D. Thesis. Chengdu: University of Chengdu Science and Engineering) (in Chinese with English abstract).

    Google Scholar 

  • Isley, A. E., & Abbott, D. H. (1999). Plume-related mafic volcanism and the deposition of banded iron formation. Journal of Geophysical Research: Solid Earth, 104, 15461–15477 (1978–2012).

    Google Scholar 

  • James, H. L. (1954). Sedimentary facies of iron-formation. Economic Geology, 49(3), 235–293.

    Article  Google Scholar 

  • Klein, C. (2005). Some Precambrian banded iron-formations (BIFs) from around the world: Their age, geologic setting, mineralogy, metamorphism, geochemistry, and origin. American Mineralogist, 90, 1473–1499.

    Article  Google Scholar 

  • Klein, C., & Beukes, N. J. (1992). Time distribution, stratigraphy, sedimentologic setting, and geochemistry of Precambrian iron-formations (pp. 139–146). Cambridge: Cambridge University Press.

    Google Scholar 

  • Konhauser, K. O., Hamade, T., Morris, R. C., Ferris, F. G., Southam, G., Raiswell, R., & Canfield, D. (2002). Could bacteria have formed the Precambrian banded iron formations? Geology, 30, 1079–1082.

    Article  Google Scholar 

  • Kusky, T. M., & Li, J. H. (2003). Paleoproterozoic tectonic evolution of the North China Craton. Journal of Asian Earth Sciences, 22, 383–397.

    Article  Google Scholar 

  • Li, H. M., Chen, Y. C., Li, L. X., & Wang, D. H. (2012). Metallogenic regularity of iron deposits in China (pp. 1–246). Beijing: Geological Publishing House (in Chinese).

    Google Scholar 

  • Li, Y.-H., Hon, K.-J., Wan, D.-F., Zhang, Z.-J., & Yue, G.-L. (2010). Formation mechanism of Precambrian Banded Iron Formation and atmosphere and ocean during early stage of the Earth. Acta Petrologica Sinica, 4(9), 1359–1373. (in Chinese with English abstract).

    Google Scholar 

  • Li, Y.-L., Konhauser, K. O., & Cole, D. R. (2011). Mineral ecophysiological data provide growing evidence for microbial activity in banded-iron formations. Geology, 39, 707–710.

    Article  Google Scholar 

  • Li, H.-M., Zhang, Z.-J., Li, L.-X., Zhang, Z.-C., Chen, J., & Yao, T. (2014). Types and general characteristics of the BIF-related iron deposits in China. Ore Geology Reviews, 57, 264–287.

    Article  Google Scholar 

  • Li, Z.-H., Zhu, X.-K., & Tang, S.-H. (2008). Characters of Fe isotopes and rare earth elements of banded iron formations from Anshan-Benxi area: Implications for Fe source. Acta Petrologica et Mineralogica, 27(4), 285–290. (in Chinese with English abstact).

    Google Scholar 

  • Liu, M. J. (2013). Hydrothermal reworking processes and its significance for meta-sedimentary iron deposit of Gongchangling in Liaoning Province (pp. 1–113) (Master Thesis. Beijing: China University of Geosciences) (in Chinese).

    Google Scholar 

  • Liu, L., Zhang, L.-C., & Dai, Y.-P. (2014). Formation age and genesis of the banded iron formations from the Guyang Greenstone Belt, Western North China Craton. Ore Geology Reviews, 63, 388–404.

    Article  Google Scholar 

  • McLennan, S.-M. (1989). Rare earth elements in sedimentary rocks: Influence of provenance and sedimentary processes. In B. R. Lipin & G. A. McKay (Eds.), Geochemistry and mineralogy of rare earth elements (Vol. 21, pp. 169–200) (Reviews in Mineralogy and Geochemistry).

    Google Scholar 

  • Mloszewska, A. M., Pecoits, E., Cates, N. L., Mojzsis, S. J., O’Neil, J., Robbins, L. J., & Konhauser, K. O. (2012). The composition of Earth’s oldest iron formations: The Nuvvuagittuq Supracrustal Belt (Québec, Canada). Earth and Planetary Science Letters, 317, 331–342.

    Article  Google Scholar 

  • Nutman, A. P., Wan, Y.-S., Du, L.-L., Friend, C. R. L., Dong, C.-Y., Xie, H.-Q., et al. (2011). Multistage late Neoarchaean crustal evolution of the North China Craton, Eastern Hebei. Precambrian Research, 189, 43–65.

    Article  Google Scholar 

  • Ohmoto, H., Watanabe, Y., Yamaguchi, K. E., Naraoka, H., Haruna, M., Kakegawa, T., et al. (2006). Chemical and biological evolution of early Earth: Constraints from banded iron formations. Geological society of America Memoirs, 198, 291–331.

    Google Scholar 

  • Ouyang, Z.-Y., Zhang, F.-Q., Lin, W.-Z., & Wang, S.-J. (1995). Tectonic framework of the North China craton and evolving model. Chinese Science Bulletin, 40, 734–736.

    Google Scholar 

  • Pearce, J. A., Harris, N. B. W., & Tindle, A. G. (1982). Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. The Journal of Geology, 25, 956–983.

    Google Scholar 

  • Piepgras, D. J., & Wasserburg, G. J. (1982). Isotopic composition of neodymium in waters from the Drake Passage. Science, 217, 207–214.

    Article  Google Scholar 

  • Planavsky, N., Bekker, A., Rouxel, O. J., Kamber, B., Hofmann, A., Knudsen, A., & Lyons, T. W. (2010). Rare earth element and yttrium compositions of Archean and Paleoproterozoic Fe formations revisited: New perspectives on the significance and mechanisms of deposition. Geochimica et Cosmochimica Acta, 74, 6387–6405.

    Article  Google Scholar 

  • Planavsky, N., Rouxel, O. J., Bekker, A., Hofmann, A., Little, C. T. S., & Lyon, T. W. (2012). Iron isotope composition of some Archean and Proterozoic iron formations. Geochimica et Cosmochimica Acta, 80, 158–169.

    Article  Google Scholar 

  • Qu, J.-F., Li, J.-Y., & Liu, J.-F. (2013). Formation age and its significance of Wangsiyu BIF type iron deposit in Eastern Hebei. Geology Bulletin, 32(2–3), 260–266.

    Google Scholar 

  • Robert, F., & Ali, P. (2007). Source heterogeneity for the major components of 3.7 Ga Banded Iron Formations (Isua Greenstone Belt, Western Greenland): Tracing the nature of interacting water masses in BIF formation. Earth and Planetary Science Letters, 253(1), 266–281.

    Google Scholar 

  • Rubatto, D., & Hermann, J. (2007). Zircon behaviour in deeply subducted rocks. Elements, 3, 31–35.

    Article  Google Scholar 

  • Rye, R., & Holland, H. D. (2000). Geology and geochemistry of paleosols developed on the Hekpoort basalt, Pretoria Group, South Africa. American Journal of Science, 300, 85–141.

    Article  Google Scholar 

  • Vavra, G., Schmidt, R., & Gebauer, D. (1999). Internal morphology, habit and U-Th-Pb microanalysis of amphibolite-to-granulite facies zircons: Geochronology of the Ivrea Zone (Southern Alps). Contributions to Mineralogy and Petrology, 134, 380–404.

    Article  Google Scholar 

  • Wan, Y.-S., Song, B., Yang, D., & Liu, D.-Y. (2005). Zircon SHRIMP U–Pb geochronology of Archean rocks from the Fushun–Qingyuan Area, Liaoning Province and its geological significance. Acta Geologica Sinica, 79, 78–87 (in Chinese with English abstract).

    Google Scholar 

  • Wan, Y.-S., Dong, C.-Y., Liu, D.-Y., Kröner A., Yang, C.-H., Wang, W. et al. (2012a). Zircon ages and geochemistry of late Neoarchean syenogranites in the North China Craton: A review. Precambrian Research, 222–223, 265–289.

    Google Scholar 

  • Wan, Y.-S., Dong, C.-Y., Xie, H.-Q., Wang, S.-J., Song, M.-C., Xu, Z.-Y. et al. (2012b). Formation ages of early Precambrian BIFs in North China Craton: SHRIMP zircon U-Pb dating. Acta Geologica Sinica, 86, 1447–1478 (in Chinese with English abstract).

    Google Scholar 

  • Wan, Y.-S., Liu, D., Wang, W., Song, T., Kröner A., Dong, C., et al. (2011b). Provenance of Meso to Neoproterozoic cover sediments at the Ming Tombs, Beijing, North China Craton: An integrated study of U-Pb dating and Hf isotopic measurement of detrital zircons and whole-rock geochemistry. Gondwana Research, 20(1), 219–242.

    Google Scholar 

  • Wan, Y.-S., Liu, D., Wang, S., Yang, E., Wang, W., Dong, C., et al. (2011a). ∼2.7 Ga juvenile crust formation in the North China Craton (Taishan-Xintai area, western Shandong Province): Further evidence of an understated event from U-Pb dating and Hf isotopic composition of zircon. Precambrian Research, 186(1–4), 169–180.

    Google Scholar 

  • Wang, H.-C., Kang, J.-L., Ren, Y.-W., Chu, H., Lu, S.-N., & Xiao, Z.-B. (2015d). Identification of ~2.7 Ga BIF in North China Craton: Evidence from geochronology of iron formation in Laizhou-Changyi area, JIaobei terrane. Acta Petrologica Sinica, 31(10), 2991–3011 (in Chinese with English abstract).

    Google Scholar 

  • Wang, C.-L., Konhauser, K.O., & Zhang, L.-C. (2015a). Depositional environment of the Paleoproterozoic Yuanjiacun Banded Iron Formation in Shanxi Province, China. Economic Geology, 110, 1515–1539.

    Google Scholar 

  • Wang, C.-L., Konhauser, K. O., Zhang, L.-C., & Li, W.-J. (2015c). Decoupled sources of the ~2.3 Ga Yuanjiacun banded iron formation: Implications for the Nd cycle in Earth’s early oceans, Precambrian Research (in press).

    Google Scholar 

  • Wang, S.-L., & Zhang, R.-H. (1995). Single zircon age and its significance of biotite leptynite in Qidashan iron deposit. Mineralium Geology, 14(3), 216–219. (in Chinese with English abstract).

    Google Scholar 

  • Wang, C.-L., Zhang, L.-C., Dai, Y.-P., & Lan, C.-Y. (2015b). Geochronological and geochemical constraints on the origin of clastic meta-sedimentary rocks associated with the Yuanjiacun BIF from the Lüliang Complex, North China. Lithos, 212–215, 231–246.

    Google Scholar 

  • Wang, C.-L., Zhang, L.-C., Dai, Y.-P., & Li, W.-J. (2014b). Source characteristics of the ~2.5 Ga Wangjiazhuang Banded Iron Formation from the Wutai greenstone belt in the North China Craton: Evidence from neodymium isotopes. Journal of Asian Earth Sciences, 93, 353–373.

    Google Scholar 

  • Wang, C.-L., Zhang, L.-C., Lan, C.-Y., & Dai, Y.-P. (2014a). Rare earth element and yttrium compositions of the Paleoproterozoic Yuanjiacun BIF in the Lüliang area and their implications for the Great Oxidation Event (GOE). Science China Earth Sciences, 57, 2469–2485.

    Google Scholar 

  • Wilde, S. A., Cawood, P. A., Wang, K.-Y., Nemchin, A., & Zhao, G.-C. (2004). Determining Precambrian crustal evolution in China: A case-study from Wutaishan, Shanxi Province, demonstrating the application of precise SHRIMPU-Pb geochronology. In J. Malpas, C. J. N. Fletcher, J. R. Ali, & J. C. Aichison (Eds.), Aspects of the tectonic evolution of China (Vol. 226, pp. 5–26). Geological Society of London, Special Publication.

    Google Scholar 

  • Xiang, P., Cui, M.-L., Wu, H.-Y., Zhang, X.-J., & Zhang, L.-C. (2012). Geological characteristics, ages of host rocks and its geological significance of the Zhoutaizi iron deposit in Luanping, Hebei Province. Acta Petrologica Sinica, 28, 3655–3669. (in Chinese with English abstract).

    Google Scholar 

  • Yang, X. Q. (2013). Ore-forming processes of iron deposits in Anshan-Benxi metamorphic rock area (pp. 1–136) (Master Thesis. China University of Geoscience).

    Google Scholar 

  • Yang, X.-Q., Li, H.-M., Li, L.-X., Yao, T., Chen, J., & Liu, M.-J. (2014a). Geochemical characteristics of banded iron formations in Liaoning-Eastern Hebei area: I. Characteristics of major elements. Acta Petrologica Sinica, 30(5), 1218–1238 (in Chinese with English abstract).

    Google Scholar 

  • Yang, X.-Y., Liu, L., Lee, I., Wang, B., Du, Z., Wang, Q. (2014b). A review on the Huoqiu banded iron formation (BIF), southeast margin of the North China Craton: Genesis of iron deposits and implications for exploration. Ore Geology Reviews, 63, 418–443.

    Google Scholar 

  • Yao, T., Li, H.-M., Yang, X.-Q., Li, L.-X., Chen, J., Zhang, J.-Y., et al. (2014). Geochemical characteristics of banded iron formations in Liaoning-Eastern Hebei area: II. Characteristics of rare earth elements. Acta Petrologica Sinica, 30(5), 1239–1252. (in Chinese with English abstract).

    Google Scholar 

  • Zhai, M.-G. (1993). Archean Anshan BIFs and gneisses. In Z.-P. Zhao (Eds.), Precambrian crustal evolution of the Sino-Korean Paraplatform, (pp. 389–390). Science Press (in Chinese).

    Google Scholar 

  • Zhai, M.-G. (2010). Evolvement and ore-forming processes of North China Craton. Mineralium Geology, 39(1), 24–36.

    Google Scholar 

  • Zhai, M.-G., & Liu, W.-J. (2003). Paleoproterozoic tectonic history of the North China Craton: A review. Precambrian Research, 122, 183–199.

    Article  Google Scholar 

  • Zhai, M.-G., & Santosh, M. (2011). The early Precambrian odyssey of the North China Craton: A synoptic overview. Gondwana Research, 20, 6–25.

    Article  Google Scholar 

  • Zhai, M.-G., & Windley, B. F. (1990). The Archaean and early Proterozoic banded iron formations of North China: Their characteristics geotectonic relations, chemistry and implications for crustal growth. Precambrian Research, 48, 267–286.

    Article  Google Scholar 

  • Zhai, M.-G., Windley, B. F., & Sills, J. D. (1990). Archaean gneisses amphibolites, banded iron-formation from Anshan area of Liaoning, NE China: Their geochemistry, metamorphism and petrogenesis. Precambrian Research, 46, 195–216.

    Article  Google Scholar 

  • Zhang, L.-C., Zhai, M.-G., Wan, Y.-S., Guo, J.-H., Dai, Y.-P., Wang, C.-L., et al. (2012a). Study of the Precambrian BIF-iron deposits in the North China Craton: Progresses and questions. Acta Petrologica Sinica, 28, 3431–3445 (in Chinese with English abstract).

    Google Scholar 

  • Zhang, L.-C., Zhai, M.-G., Zhang, X.-J., Xiang, P., Dai, Y.-P., Wang, C.-L., et al. (2012b). Formation age and tectonic setting of the Shirengou Neoarchean banded iron deposit in eastern Hebei Province: Constraints from geochemistry and SIMS zircon U–Pb dating. Precambrian Research, 222, 325–338.

    Google Scholar 

  • Zhang, X.-J., Zhang, L.-C., Xiang, P., Wan, B., & Pirajno, F. (2011). Zircon U–Pb age, Hf isotopes and geochemistry of Shuichang Algoma-type banded iron-formation, North China Craton: Constraints on the ore-forming age and tectonic setting. Gondwana Research, 20, 137–148.

    Article  Google Scholar 

  • Zhao, G.-C., Sun, M., Wilde, S. A., & Li, S.-Z. (2005). Late Archean to Paleoproterozoic evolution of the North China craton: Key issues revisited. Precambrian Research, 136, 177–202.

    Article  Google Scholar 

  • Zhao, G.-C., Wilde, S. A., Cawood, P. A., & Sun, M. (2001). Archean blocks and their boundaries in the North China Craton: Lithological geochemical, structural and P–T path constraints and tectonic evolution. Precambrian Research, 107, 45–73.

    Article  Google Scholar 

  • Zheng, M.-T., Zhang, L.-C., Wang, C.-L., Zhu, M.-T., Li, Z.-Q., & Wang, Y.-T. (2015). Formation age and origin of the Xingshan BIF type iron deposit in eastern Hebei Province. Acta Petrologica Sinica, 31(6), 1636–1652. (in Chinese with English abstract).

    Google Scholar 

  • Zhou, S. T. (1994). Geology of the BIF in Anshan-Benxi (pp. 1–277). Beijing: Area Geological Publishing House (in Chinese).

    Google Scholar 

  • Zhu, M.-T., Dai, Y.-P., Zhang, L.-C., Wang, C.-L., & Liu, L. (2015a). Geochronology and geochemistry of the Nanfen iron deposit in the Anshan-Benxi area, North China Craton: Implications for ∼2.55 Ga crustal growth and the genesis of high-grade iron ores. Precambrian Research, 260, 23–38.

    Google Scholar 

  • Zhu, M.-T., Zhang, L.-C., Dai, Y.-P., & Wang, C.-L. (2015b). In situ zircon U-Pb dating and O isotopes of the Neoarchean Hongtoushan VMS Cu-Zn deposit in the North China Craton: Implication for the ore genesis. Ore Geology Reviews, 67, 354–367.

    Google Scholar 

Download references

Acknowledgments

This study was financially supported by the Major State Basic Research Programme of the People’s Republic of China (No. 2012CB416601), the National Natural Science Foundation of China (No. 41572076), and the Knowledge Innovation Programme of the Chinese Academy of Sciences (No. KZCX2-YW-Q04-07). We appreciate much help from prof. Mingguo Zhai, Dr. Yanpei Dai, Mengtian Zheng, and Zhiquan Li.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lianchang Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Zhang, L., Wang, C., Zhu, M., Huang, H., Peng, Z. (2016). Neoarchean Banded Iron Formations in the North China Craton: Geology, Geochemistry, and Its Implications. In: Zhai, M., Zhao, Y., Zhao, T. (eds) Main Tectonic Events and Metallogeny of the North China Craton. Springer Geology. Springer, Singapore. https://doi.org/10.1007/978-981-10-1064-4_5

Download citation

Publish with us

Policies and ethics