Skip to main content
Book cover

Telocytes pp 127–137Cite as

Telocytes in Cardiac Tissue Architecture and Development

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 913))

Abstract

The heart is a paradigm of organ provided with unique three-dimensional tissue architecture that is molded during complex organogenesis processes and is required for the heart’s physiological function. The cardiac stroma plays a critical role in the formation and maintenance of the normal heart architecture, as well as of its changes occurring in cardiac diseases. Recent studies have shown that the cardiac stroma, including the epicardium, myocardial interstitium, and endocardium, contains typical telocytes: these cells establish complex spatial relationships with cardiomyocytes and cardiac stem cells suggestive for a regulatory role over three-dimensional organization of heart tissues. Telocytes appear early during prenatal heart development and represent a major stromal cell population in the adult heart. Numerous studies have highlighted that telocytes, through juxtacrine and paracrine mechanisms, can behave as nursing cells for cardiac muscle stem cells modulating their growth and differentiation. On these grounds, a possible role of telocytes in cardiac regeneration can be postulated: this hypothesis is supported by recent experimental findings that reduction of cardiac telocytes due to hypoxia may concur to explain the negligible regenerative ability of the post-infarcted heart, while grafting of telocytes in the injured myocardium improves adverse heart remodeling. The increasing knowledge on the properties of cardiac telocytes is orienting the research toward their role as key regulators of the three-dimensional architecture of the heart and new promising targets for cardiac regenerative medicine.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Adams JC, Watt FM. Regulation of development and differentiation by the extracellular matrix. Development. 1993;117:1183–98.

    CAS  PubMed  Google Scholar 

  2. Albulescu R, Tanase C, Codrici E, Popescu DI, Cretoiu SM, Popescu LM. The secretome of myocardial telocytes modulates the activity of cardiac stem cells. J Cell Mol Med. 2015;19:1783–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ausoni S, Sartore S. The cardiovascular unit as a dynamic player in disease and regeneration. Trends Mol Med. 2009;15:543–52.

    Article  PubMed  Google Scholar 

  4. Bani D, Formigli L, Gherghiceanu M, Faussone-Pellegrini MS. Telocytes as supporting cells for myocardial tissue organization in developing and adult heart. J Cell Mol Med. 2010;14:2531–8.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Bani D, Nistri S. New insights into the morphogenic role of stromal cells and their relevance for regenerative medicine. Lessons from the heart. J Cell Mol Med. 2014;18:363–70.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Bei Y, Zhou Q, Fu S, Lv D, Chen P, Chen Y, Wang F, Xiao J. Cardiac telocytes and fibroblasts in primary culture: different morphologies and immunophenotypes. PLoS One. 2015;10(2):e0115991.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Beltrami AP, Barlucchi L, Torella D, Baker M, Limana F, Chimenti S, Kasahara H, Rota M, Musso E, Urbanek K, Leri A, Kajstura J, Nadal-Ginard B, Anversa P. Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell. 2003;114:763–76.

    Article  CAS  PubMed  Google Scholar 

  8. Carlson S, Trial J, Soeller C, Entman ML. Cardiac mesenchymal stem cells contribute to scar formation after myocardial infarction. Cardiovasc Res. 2011;91:99–107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chang Y, Li C, Lu Z, Li H, Guo Z. Multiple immunophenotypes of cardiac Telocytes. Exp Cell Res. 2015. pii: S0014-4827(15)30073-2.

    Google Scholar 

  10. Crawford JR, Haudek SB, Cieslik KA, Trial J, Entman ML. Origin of developmental precursors dictates the pathophysiologic role of cardiac fibroblasts. J Cardiovasc Transl Res. 2012;5:749–59.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Cretoiu D, Hummel E, Zimmermann H, Gherghiceanu M, Popescu LM. Human cardiac telocytes: 3D imaging by FIB-SEM tomography. J Cell Mol Med. 2014;18:2157–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Doljanski F. The sculpturing role of fibroblast-like cells in morphogenesis. Perspect Biol Med. 2004;47:339–56.

    Article  PubMed  Google Scholar 

  13. Faussone-Pellegrini MS, Bani D. Relationships between telocytes and cardiomyocytes during pre- and post-natal life. J Cell Mol Med. 2010;14:1061–3.

    PubMed  PubMed Central  Google Scholar 

  14. Fertig ET, Gherghiceanu M, Popescu LM. Extracellular vesicles release by cardiac telocytes: electron microscopy and electron tomography. J Cell Mol Med. 2014;18:1938–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gherghiceanu M, Manole CG, Popescu LM. Telocytes in endocardium: electron microscope evidence. J Cell Mol Med. 2010;14:2330–4.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Gherghiceanu M, Popescu LM. Cardiomyocyte precursors and telocytes in epicardial stem cell niche: electron microscope images. J Cell Mol Med. 2010;14:871–7.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Gherghiceanu M, Popescu LM. Heterocellular communication in the heart: electron tomography of telocyte-myocyte junctions. J Cell Mol Med. 2011;15:1005–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gherghiceanu M, Popescu LM. Cardiac telocytes - their junctions and functional implications. Cell Tissue Res. 2012;348:265–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hay ED. Cell and extracellular matrix: their organization and mutual dependence. Mol Cell Biol. 1983;2:509–48.

    Google Scholar 

  20. Hay ED. The mesenchymal cell, its role in the embryo, and the remarkable signaling mechanisms that create it. Dev Dyn. 2005;233:706–20.

    Article  CAS  PubMed  Google Scholar 

  21. Hinescu ME, Popescu LM. Interstitial Cajal-like cells (ICLC) in human atrial myocardium. J Cell Mol Med. 2005;9:972–5.

    Article  CAS  PubMed  Google Scholar 

  22. Hove JR, Köster RW, Forouhar AS, Acevedo-Bolton G, Fraser SE, Gharib M. Intracardiac fluid forces are an essential epigenetic factor for embryonic cardiogenesis. Nature. 2003;421:172–7.

    Article  CAS  PubMed  Google Scholar 

  23. Ieda M, Tsuchihashi T, Ivey KN, Ross RS, Hong TT, Shaw RM, Srivastava D. Cardiac fibroblasts regulate myocardial proliferation through beta1 integrin signaling. Dev Cell. 2009;16:233–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kajstura J, Urbanek K, Rota M, Bearzi C, Hosoda T, Bolli R, Anversa P, Leri A. Cardiac stem cells and myocardial disease. J Mol Cell Cardiol. 2008;45:505–13.

    Article  CAS  PubMed  Google Scholar 

  25. Kostin S, Popescu LM. A distinct type of cell in myocardium: interstitial Cajal-like cells [ICLCs]. J Cell Mol Med. 2009;13:295–308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kostin S. Myocardial telocytes: a specific new cellular entity. J Cell Mol Med. 2010;14:1917–21.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Lajiness JD, Conway SJ. The dynamic role of cardiac fibroblasts in development and disease. J Cardiovasc Transl Res. 2012;5:739–48.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Manetti M, Guiducci S, Ruffo M, et al. Evidence for progressive reduction and loss of telocytes in the dermal cellular network of systemic sclerosis. J Cell Mol Med. 2013;17:482–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Manetti M, Rosa I, Messerini L, Guiducci S, Matucci-Cerinic M, Ibba-Manneschi L. A loss of telocytes accompanies fibrosis of multiple organs in systemic sclerosis. J Cell Mol Med. 2014;18:253–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Mazhari R, Hare JM. Mechanisms of action of mesenchymal stem cells in cardiac repair: potential influences on the cardiac stem cell niche. Nat Clin Pract Cardiovasc Med. 2007;4 Suppl 1:S21–6.

    Article  PubMed  Google Scholar 

  31. McClay DR. The role of thin filopodia in motility and morphogenesis. Exp Cell Res. 1999;253:296–301.

    Article  CAS  PubMed  Google Scholar 

  32. Miao Q, Shim W, Tee N, Lim SY, Chung YY, Ja KP, Ooi TH, Tan G, Kong G, Wei H, Lim CH, Sin YK, Wong P. iPSC-derived human mesenchymal stem cells improve myocardial strain of infarcted myocardium. J Cell Mol Med. 2014;18:1644–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Müller P, Beltrami AP, Cesselli D, Pfeiffer P, Kazakov A, Böhm M. Myocardial regeneration by endogenous adult progenitor cells. J Mol Cell Cardiol. 2005;39:377–87.

    Article  PubMed  Google Scholar 

  34. Niculite CM, Regalia TM, Gherghiceanu M, Huica R, Surcel M, Ursaciuc C, Leabu M, Popescu LM. Dynamics of telopodes (telocyte prolongations) in cell culture depends on extracellular matrix protein. Mol Cell Biochem. 2015;398:157–64.

    Article  CAS  PubMed  Google Scholar 

  35. Noseda M, Schneider MD. Fibroblasts inform the heart: control of cardiomyocyte cycling and size by age-dependent paracrine signals. Dev Cell. 2009;16:161–2.

    Article  CAS  PubMed  Google Scholar 

  36. Popescu LM, Gherghiceanu M, Manole CG, Faussone-Pellegrini MS. Cardiac renewing: interstitial Cajal-like cells nurse cardiomyocyte progenitors in epicardial stem cell niches. J Cell Mol Med. 2009;13:866–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Popescu LM, Manole CG, Gherghiceanu M, Ardelean A, Nicolescu MI, Hinescu ME, Kostin S. Telocytes in human epicardium. J Cell Mol Med. 2010;14:2085–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Qian L, Huang Y, Spencer CI, Foley A, Vedantham V, Liu L, Conway SJ, Fu JD, Srivastava D. In vivo reprogramming of murine cardiac fibroblasts into induced cardiomyocytes. Nature. 2012;485:593–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Rusu MC, Pop F, Hostiuc S, Curca GC, Jianu AM, Paduraru D. Telocytes form networks in normal cardiac tissues. Histol Histopathol. 2012;27:807–16.

    CAS  PubMed  Google Scholar 

  40. Suciu L, Nicolescu MI, Popescu LM. Cardiac telocytes: serial dynamic images in cell culture. J Cell Mol Med. 2010;14:2687–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Tao L, Wang H, Wang X, Kong X, Li X. Cardiac Telocytes. Curr Stem Cell Res Ther. 2016;11:404–9.

    Google Scholar 

  42. Trinh LA, Stainier DY. Fibronectin regulates epithelial organization during myocardial migration in zebrafish. Dev Cell. 2004;6:371–82.

    Article  CAS  PubMed  Google Scholar 

  43. Urbanek K, Torella D, Sheikh F, De Angelis A, Nurzynska D, Silvestri F, Beltrami CA, Bussani R, Beltrami AP, Quaini F, Bolli R, Leri A, Kajstura J, Anversa P. Myocardial regeneration by activation of multipotent cardiac stem cells in ischemic heart failure. Proc Natl Acad Sci U S A. 2005;102:8692–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Weil BR, Canty Jr JM. Stem cell stimulation of endogenous myocyte regeneration. Clin Sci (Lond). 2013;125:109–19.

    Article  CAS  Google Scholar 

  45. Wessells NK. Tissue interactions and development. Menlo Park: The Benjamin/Cummings Publishing Company; 1977.

    Google Scholar 

  46. Yang Y, Sun W, Wu SM, Xiao J, Kong X. Telocytes in human heart valves. J Cell Mol Med. 2014;18:759–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhao B, Liao Z, Chen S, et al. Intramyocardial transplantation of cardiac telocytes decreases myocardial infarction and improves post-infarcted cardiac function in rats. J Cell Mol Med. 2014;18:780–9.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Zhou J, Zhang Y, Wen X, Cao J, Li D, Lin Q, Wang H, Liu Z, Duan C, Wu K, Wang C. Telocytes accompanying cardiomyocyte in primary culture: two- and three-dimensional culture environment. J Cell Mol Med. 2010;14:2641–5.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Zhou J, Wang Y, Zhu P, Sun H, Mou Y, Duan C, Yao A, Lv S, Wang C. Distribution and characteristics of telocytes as nurse cells in the architectural organization of engineered heart tissues. Sci China Life Sci. 2014;57:241–7.

    Article  CAS  PubMed  Google Scholar 

  50. Zhou Q, Wei L, Zhong C, Fu S, Bei Y, Huică RI, Wang F, Xiao J. Cardiac telocytes are double positive for CD34/PDGFR-α. J Cell Mol Med. 2015;19:2036–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniele Bani MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Bani, D. (2016). Telocytes in Cardiac Tissue Architecture and Development. In: Wang, X., Cretoiu, D. (eds) Telocytes. Advances in Experimental Medicine and Biology, vol 913. Springer, Singapore. https://doi.org/10.1007/978-981-10-1061-3_8

Download citation

Publish with us

Policies and ethics