Skip to main content

3D Environment Reconstruction Using Mobile Robot Platform and Monocular Vision

  • Conference paper
  • First Online:
Advanced Computing and Communication Technologies

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 452))


Constructing a 3D map/perception model of an unknown indoor or outdoor environment using robotics is of compelling research nowadays because of the importance of the automatic monitoring system. Available IMU sensors and mobile robot kinematics allow 3D reconstruction to be finished in near real-time using a very low cost robotic platform. In this paper, we describe a framework for dense 3D reconstruction on an inexpensive robotic platform using a webcam and robot wheel odometry. Our experimental results show that our technique is efficient and robust to a variety of indoor and outdoor environment scenarios with different scale and size.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others


  1. Hartley, R., Zisserman, A.: Multiple view geometry in computer vision. Cambridge University Press. ISBN: 0-521-54051-8 (2003)

    Google Scholar 

  2. Newcombe, R.A., Lovegrove, S.J., Davison, A.J.: DTAM: Dense tracking and mapping in real-time, ICCV, pp. 2320–2327 (2011)

    Google Scholar 

  3. Pollefeys, M., Nister, D., Frahm, D.J.M., Akbarzadeh, A., Mordohai, P., Clipp, B., Engels, C., Gallup, D., Kim, S.J., Merrell, P., Salmi, C., Sinha, S., Talton, B., Wang, L., Yang, Q., Stewenius, H., Yang, R., Welch, G., Towles, H.: Detailed real-time urban 3D reconstruction from video. IJCV 78(2–3), 143–167 (2008)

    Article  Google Scholar 

  4. Pradeep, V., Rhemann, C., Izadi, S., Zach, C., Bleyer, M., Bathiche, S.: MonoFusion: Real-time 3D reconstruction of small scenes with a single web camera. In: The 13th IEEE International Symposium on Mixed and Augmented Reality, pp. 83–88 (2013)

    Google Scholar 

  5. Pizzoli, M., Forster, C., Scaramuzza, D.: REMODE: probabilistic, monocular dense reconstruction in real time. In: IEEE International Conference on Robotics and Automation (ICRA), Hong Kong, pp. 2609–2616 (2014)

    Google Scholar 

  6. Saha, A., Bhowmick, B., Sinha, A.: A system for near real-time 3D reconstruction from multi-view using 4G enabled mobile. In: IEEE International Conference on Mobile Services (MS), pp. 1–7, (2014)

    Google Scholar 

  7. Tanskanen, P., Kolev, K., Meier, L., Paulsen, F.C., Saurer, O., Pollefeys, M.: Live metric 3D reconstruction on mobile phones. In: ICCV, pp. 65–72 (2013)

    Google Scholar 

  8. Bhowmick, B., Mallik, A., Saha, A.: Mobiscan3D: A low cost framework for real time dense 3D reconstruction on mobile devices. In: IEEE 11th International Conference on Ubiquitous Intelligence and Computing, IEEE 11th International Conference on and Autonomic and Trusted Computing, and IEEE 14th International Conference on Scalable Computing and Communications and Its Associated Workshops (UTC-ATC-ScalCom), pp. 783–788 (2014)

    Google Scholar 

  9. Mallik, A., Bhowmick, B., Alam, S.: A multi-sensor information fusion approach for efficient 3D reconstruction in smart phone. In: International Conference on Image Processing, Computer Vision, and Pattern Recognition (IPCV), pp 291–298 (2015)

    Google Scholar 

  10. Davison, A.: Real-time simultaneous localisation and mapping with a single camera. In: IEEE International Conference on Computer Vision, pp. 1403–1410 (2003)

    Google Scholar 

  11. Deshpande, P., Reddy, V.R., Saha, A., Vaiapury, K., Dewangan, K., Dasgupta, R.: A next generation mobile robot with multi-mode sense of 3D perception. In: International Conference on Advanced Robotics (ICAR) Istanbul, pp 382–387, (2015)

    Google Scholar 

  12. Firebird VI. (2015). Access 20 Oct 2015

  13. Martinez, A., Fernández, E.: Learning ROS for robotics programming. PACKT Publishing Ltd. (2013). ISBN: 978-1-78216-144-8

    Google Scholar 

  14. ROS usb Camera Package. (2015). Accessed 20 Oct 2015

  15. Zhang, Z.: Flexible camera calibration by viewing a plane from unknown orientations. In: International Conference on Computer Vision (ICCV’99), pp 666–673, (1999)

    Google Scholar 

  16. Zhang, Z.: A flexible new technique for camera calibration. IEEE Trans. Pattern Anal. Mach. Intell. 22(11), 1330–1334 (2000)

    Article  Google Scholar 

  17. ROS Robot Pose EKF Package. (2015). Accessed 20 Oct 2015

  18. ROS Robot Localization Package. Accessed 20 Oct 2015

  19. Hirschmuller, H., Scharstein, D.: Evaluation of stereo matching costs on images with radiometric differences. IEEE Trans. Pattern Anal. Machine Intell. 31(9), 1582–1599 (2009)

    Article  Google Scholar 

  20. Brox, T., Malik, J.: Large displacement optical flow: descriptor matching in variational motion estimation. IEEE Trans. Pattern Anal. Mach. Intell. 33(3), 500–513 (2011)

    Article  Google Scholar 

  21. Sundaram, N., Brox, T., Keutzer, K.: Dense point trajectories by GPU-accelerated large displacement optical flow. In: European Conference on Computer Vision (ECCV), pp. 438–451, Crete, Greece, Springer, LNCS (2010)

    Google Scholar 

  22. Ummenhofer, B., Brox, T.: Dense 3D reconstruction with a hand-held camera. Springer, Berlin Heidelberg (2012)

    Book  Google Scholar 

  23. Hartley, R.I., Sturm, P.: Triangulation. Comput. Vis. Image Underst. 68(2), 146–157 (1997)

    Article  Google Scholar 

  24. Nützi, G., Weiss, S., Scaramuzza, D., Siegwart, R.: Fusion of IMU and vision for absolute scale estimation in monocular SLAM. J. Intell. Robot Syst 61(1–4), 287–299 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Keshaw Dewangan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this paper

Cite this paper

Dewangan, K., Saha, A., Vaiapury, K., Dasgupta, R. (2016). 3D Environment Reconstruction Using Mobile Robot Platform and Monocular Vision. In: Choudhary, R., Mandal, J., Auluck, N., Nagarajaram, H. (eds) Advanced Computing and Communication Technologies. Advances in Intelligent Systems and Computing, vol 452. Springer, Singapore.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-1021-7

  • Online ISBN: 978-981-10-1023-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics