Skip to main content

Aseptic Peritonitis Model for Drug Discovery (As Therapy)

  • Chapter
  • First Online:
Perspectives in Translational Research in Life Sciences and Biomedicine
  • 452 Accesses

Abstract

Peritonitis is defined as an inflammation of the serosal membrane that lines the abdominal cavity and the organs contained therein. The peritoneum, which is an otherwise sterile environment, reacts to various pathologic stimuli with a fairly uniform inflammatory response. Depending on the underlying pathology, the resultant peritonitis may be infectious or sterile (i.e., chemical or mechanical). The pathophysiology of peritonitis is complicated and is involved in various processes, of which, the most important one is the inflammatory reaction. During the pathological process of the peritonitis, NF-κB plays an activating role in the inflammatory reaction, which might be a potential therapeutic target in the future clinical work. The aim of the study was to test the anti-inflammatory and proregenerative actions of fisetin, a flavonol found in many plants, in a mouse model of thioglycollate-induced peritonitis as well as the actions of fisetin administered with a nanoparticle such as mesoporous carbon nanoparticle (MCN). BALB/c mice were used in this study. We found cell recruitment in the blood increases with the administration of TG after 24, 48, and 96 h, showing that it has induced inflammation. Cell recruitment is successfully inhibited by fisetin after 24 h (p < 0.05), and with MCN + fisetin after 48 h (p < 0.05). In the peritoneal fluid, total cell recruitment has increased after 24 h (p < 0.05), which is successfully inhibited with fisetin treatment after 96 h. TG treatment has significantly reduced cell proliferation in the blood, PF and BM, within 24 h, till 96 h. Interestingly, cell proliferation has increased with fisetin treatment after 24 h, and with MCN + fisetin after 24 h (in PF) and after 48 h (in PB and BM). The clonogenic potential of the tissues decreases significantly within 24 h, with administration of TG. Both fisetin treatment and MCN + fisetin treatment have restored the clonogenic potential of the tissues after 24 h. There was a decrease in Th2 cytokines with TG treatment, in blood after 48 h and fisetin and MCN + fisetin has increased the cytokine content. In conclusion, we found that fisetin had a promising therapeutic effect on the peritonitis.

Therapeutic use of fisetin and fisetin loaded on mesoporous carbon nanoparticle (MCN) in thioglycollate-induced peritonitis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

TG:

Thioglycollate

F:

Only fisetin

MF:

Fisetin loaded on MCN

TG24, TG48, TG72, TG96:

Treatment with only TG; kill after 24, 48, 72, 96 h, respectively

TG24F, TG48F, TG72F, TG96F:

Treatment with TG, followed by fisetin; kill after 24, 48, 72, 96 h, respectively

TG24MF, TG48MF, TG72MF, TG96MF:

Treatment with TG, followed by MF; kill after 24, 48, 72, 96 h, respectively

PB:

Peripheral blood sample

PF:

Peritoneal fluid sample

BM:

Bone marrow sample

TC:

Total cell count

DC:

Differential cell count

PMN Cells:

Polymorphonuclear cells

MN Cells:

Mononuclear cells

NO:

Nitric oxide

MTS:

[3-(4, 5-dimethyl thiazol-2-yl)-5-(3-carboxy methoxy phenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt]

PMS:

Phenazine methosulfate

CFU-c:

Colony-forming units in culture

MPK:

Milligram per kilogram of body weight

:

Denotes significance in samples compared to control

:

Denotes significance in samples compared to samples treated with only TG

References

  1. Anel RL, Kumar A. Experimental and emerging therapies for sepsis and septic shock. Expert Opin Investig Drugs. 2001;10:1471–85.

    Article  CAS  PubMed  Google Scholar 

  2. Dellinger RP. Inflammation and coagulation: implications for the septic patient. Clin Infect Dis. 2003;36:1259–65.

    Article  PubMed  Google Scholar 

  3. Ritter C, Andrades ME, Reinke A, Menna-Barreto S, Moreira JCF, Dal-Pizzol F. Treatment with N-acetylcysteine plus deferoxamine protects rats against oxidative stress and improves survival in sepsis. Crit Care Med. 2004;32:342–9.

    Article  CAS  PubMed  Google Scholar 

  4. Baeuerle PA. I kappa B-NF-kappa B structures: at the interface of inflammation control. Cell. 1998;95:729–31.

    Article  CAS  PubMed  Google Scholar 

  5. Zingarelli B, Sheehan M, Wong HR. Nuclear factor-kappa B as a therapeutic target in critical care medicine. Crit Care Med. 2003;31:S105–11.

    Article  CAS  PubMed  Google Scholar 

  6. Woltmann A, Hamann L, Ulmer AJ, Gerdes J, Bruch HP, Rietschel ET. Molecular mechanisms of sepsis. Langenbecks Arch Surg. 1998;383:2–10.

    Article  CAS  PubMed  Google Scholar 

  7. Hayden MS, Ghosh S. Signaling to NF-kappa B. Genes Dev. 2004;18:2195–224.

    Article  CAS  PubMed  Google Scholar 

  8. Liu SF, Malik AB. NF-kappa B activation as a pathological mechanism of septic shock and inflammation. Am J Physiol Lung Cell Mol Physiol. 2006;290:L622–45.

    Article  CAS  PubMed  Google Scholar 

  9. Billing AG, Frohlich D, Konecny G, Schildberg FW, Machleidt W, Fritz H, et al. Local serum application–restoration of sufficient host-defense in human peritonitis. Eur J Clin Invest. 1994;24:28–35.

    Article  CAS  PubMed  Google Scholar 

  10. Feng X, Liu J, Yu M, Zhu S, Xu J. Protective roles of hydroxyethyl starch 130/0.4 in intestinal inflammatory response and survival in rats challenged with polymicrobial sepsis. Clin Chim Acta. 2007;376:60–7.

    Article  CAS  PubMed  Google Scholar 

  11. Ferrero-Miliani L, Nielsen OH, Andersen PS, Girardin SE. Chronic inflammation: importance of NOD2 and NALP3 in interleukin-1beta generation. Clin Exp Immunol. 2007;147(2):227–35.

    Google Scholar 

  12. Porth C. Essentials of pathophysiology: concepts of altered health states. Hagerstown, MD: Lippincott Williams & Wilkins; (2007). p. 270. ISBN 0-7817-7087-4.

    Google Scholar 

  13. Abbas AB, Lichtman AH. Ch. 2 Innate immunity. In Saunders (Elsevier). Basic immunology. Functions and disorders of the immune system (3rd ed.); (2009). ISBN 978-1-4160-4688-2.

    Google Scholar 

  14. Crunkhon P, Meacock S. Mediators of the inflammation induced in the rat paw by carrageenan. Br J Pharmacol. 1971;42:392–402.

    Article  Google Scholar 

  15. Cotran RS; Kumar V, Collins SL. Robbins “pathologic basis of disease.” Philadelphia: W.B Saunders Company; 1998. ISBN 0-7216-7335-X.

    Google Scholar 

  16. Khan N, Syed DN, Ahmad N, Mukhtar H. Fisetin: a dietary antioxidant for health promotion. Antioxid Redox Signal. 2013;19(2):151–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Khan N, Adhami VM, Mukhtar H. Apoptosis by dietary agents for prevention and treatment of prostate cancer. Endocr Relat Cancer. 2010;17:R39–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Khan N, Afaq F, Mukhtar H. Cancer chemoprevention through dietary antioxidants: progress and promise. Antioxid Redox Signal. 2008;10:475–510.

    Article  CAS  PubMed  Google Scholar 

  19. Boisseau P, Loubaton B. Nanomedicine, nanotechnology in medicine. CR Phys. 2011;12(7):620.

    Article  CAS  Google Scholar 

  20. Kaur G, Narang RK, Rath G, Goyal AK. Advances in pulmonary delivery of nanoparticles. Artif Cells Blood Substit Immobil Biotechnol. 2012;40:75–96.

    Article  CAS  PubMed  Google Scholar 

  21. Mohamud R, Xiang SD, Selomulya C, Rolland JM, O’Hehir RE, Hardy CL, Plebanski M. The effects of engineered nanoparticles on pulmonary immune homeostasis. Drug Metab Rev. 2014;46(2):176–90.

    Article  CAS  PubMed  Google Scholar 

  22. Remick DG. Pathophysiology of sepsis. Am J Pathol. 2007;170:1435–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Fakhrudin N, Waltenberger B, Cabaravdic M, Atanasov AG, Malainer C, Schachner D, Heiss EH, Liu R, Noha SM, Grzywacz AM, Mihaly-Bison J, Awad EM,Schuster D, Breuss JM, Rollinger JM, Bochkov V, Stuppner H, Dirsch VM. Identification of plumericin as a potent new inhibitor of the NF-κB pathway with anti-inflammatory activity in vitro and in vivo. Br J Pharmacol. 2014;171(7):1676–86.

    Google Scholar 

  24. Ghiselli R, Giacomefti A, Cirioni O, Mocchegiani F, Orlando F, Silvestri C, et al. Efficacy of the bovine antimicrobial peptide indolicidin combined with pipeyacillin/tazobactam in experimental rat models of polymicrobial peritonitis. Crit Care Med. 2008;36:240–5.

    Article  CAS  PubMed  Google Scholar 

  25. Davies MG, Hagen PO. Systemic inflammatory response syndrome. Br J Surg. 1997;84:920–35.

    Article  CAS  PubMed  Google Scholar 

  26. Tian J, Lin X, Guan R, Xu JG. The effects of hydroxyethyl starch on lung capillary permeability in endotoxic rats and possible mechanisms. Anesth Analg. 2004;98:768–74.

    Article  CAS  PubMed  Google Scholar 

  27. Perkins ND. The Rel/NF-kappa B family: friend and foe. Trends Biochem Sci. 2000;25:434–40.

    Article  CAS  PubMed  Google Scholar 

  28. Sha WC. Regulation of immune responses by NF-kappa B/Rel transcription factors. J Exp Med. 1998;187:143–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge UGC for providing fellowship and contingency grant to SM, ICMR for providing a Research Associateship to SB and to WB DBT, and SERB for funding the project of which ERB is the PI, and provide funds for infrastructure development and necessary funds to undertake expenses related to the project. The authors also acknowledge Sattar Sekh and Manisha Murmu for technical help and Priyanka Dutta for her support for all purchase and accounts-related activities critical for the smooth running of the project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ena Ray Banerjee .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Ray Banerjee, E. (2016). Aseptic Peritonitis Model for Drug Discovery (As Therapy). In: Perspectives in Translational Research in Life Sciences and Biomedicine. Springer, Singapore. https://doi.org/10.1007/978-981-10-0989-1_3

Download citation

Publish with us

Policies and ethics