Skip to main content
  • 542 Accesses

Abstract

Translational research in life sciences has become increasingly interesting and important in current scenario. Basically, translational research in life sciences tries to translate the existing basic research outcomes of life sciences into practices (treatment options) and products (drugs, devices, etc.), which could enhance the quality of health of human beings. It has gained impetus during last two decades due to larger investments of global economy to the researches oriented to human health benefits. The final aim of the translational research in life science is to incorporate scientific discoveries into improved patient care and population health. In this review article, issues regarding nutrition research (functional food, nutraceuticals, edible vaccine, medical foods, etc.), pharmaceutical research (novel drugs, biosimilars, interchangeable, etc.), nanomedicine (nanoparticle-based functional molecules), research on preclinical animal model of diseases, medical genetics, tissue engineering, and regenerative medicine have been dealt briefly with the focus on the recent developments in these areas and their implications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. El Sohaimy S. Functional foods and nutraceuticals-modern approach to food science. World Appl Sci J. 2012;20(5):691–708.

    Google Scholar 

  2. Elliott R, Pico C, Dommels Y, Wybranska I, Hesketh J, Keijer J. Nutrigenomic approaches for benefit-risk analysis of foods and food components: defining markers of health. Br J Nutr. 2007;98(6):1095–100.

    Article  CAS  PubMed  Google Scholar 

  3. Wildman R, Wildman R, Wallace TC. Handbook of nutraceuticals and functional foods. 2nd ed. Boca Raton: CRC Press; 2006. 560 p.

    Google Scholar 

  4. Mitra S, Paul P, Mukherjee K, Biswas S, Jain M, Sinha A, Jana NR, Banerjee ER. Mesoporous nano-carbon particle loaded fisetin has a positive therapeutic effect in a murine preclinical model of ovalbumin induced acute allergic asthma. J Nanomed Biotherapeutic Discov. 2015;5:132.

    Google Scholar 

  5. Das R, Trafadar B, Das P, Kar S, Mitra S, Hore G, Biswas S, Banerjee ER. Anti-inflammatory and regenerative potential of probiotics to combat inflammatory bowel disease (IBD). Biotechnol Biomaterials. 2015;5(2).

    Google Scholar 

  6. Adolfsson O, Meydani SN, Russell RM. Yogurt and gut function. Am J Clin Nutr Rev. 2004;80(2):245–56.

    Google Scholar 

  7. Food and Drug Administration Compliance program guidance manual. Program 7321.002. Medical food program-import and domestic. Revised Sept 2008. Available at http://www.fda.gov/downloads/Food/GuidanceComplianceRegulatoryInformation/ComplianceEnforcement/ucm073339.pdf. Accessed 10 Sept 2015.

  8. Eiraku M, Takata N, Ishibashi H, Kawada M, Sakakura E, Okuda S, Sekiguchi K, Adachi T, Sasai Y. Self-organizing optic-cup morphogenesis in three-dimensional culture. Nature. 2011;472(7341):51–6.

    Article  CAS  PubMed  Google Scholar 

  9. Nakano T, Ando S, Takata N, Kawada M, Muguruma K, Sekiguchi K, Saito K, Yonemura S, Eiraku M, Sasai Y. Self-formation of optic cups and storable stratified neural retina from human ESCs. Cell Stem Cell. 2012;10(6):771–85.

    Article  CAS  PubMed  Google Scholar 

  10. Singh AK, Srivastava GK, García-Gutiérrez MT, Pastor JC. Adipose derived mesenchymal stem cells partially rescue mitomycin C treated ARPE19 cells from death in co-culture condition. Histol Histopathol. 2013;28(12):1577–83.

    CAS  PubMed  Google Scholar 

  11. Rodriguez-Crespo D, Di Lauro S, Singh AK, Garcia-Gutierrez MT, Garrosa M, Pastor JC, Fernandez-Bueno I, Srivastava GK. Triple-layered mixed co-culture model of RPE cells with neuroretina for evaluating the neuroprotective effects of adipose-MSCs. Cell Tissue Res. 2014;358(3):705–16.

    Article  CAS  PubMed  Google Scholar 

  12. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126:663–76.

    Article  CAS  PubMed  Google Scholar 

  13. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131:861–72.

    Article  CAS  PubMed  Google Scholar 

  14. Takebe T, Sekine K, Enomura M, Koike H, Kimura M, Ogaeri T, Zhang RR, Ueno Y, Zheng YW, Koike N, Aoyama S, Adachi Y, Taniguchi H. Vascularized and functional human liver from an iPSC-derived organ bud transplant. Nature. 2013;499(7459):481–4.

    Article  CAS  PubMed  Google Scholar 

  15. Takebe T, Zhang RR, Koike H, Kimura M, Yoshizawa E, Enomura M, Koike N, Sekine K, Taniguchi H. Generation of a vascularized and functional human liver from an iPSC-derived organ bud transplant. Nat Protoc. 2014;9(2):396–409.

    Article  CAS  PubMed  Google Scholar 

  16. Nunes SS, Maijub JG, Krishnan L, Ramakrishnan VM, Clayton LR, Williams SK, Hoying JB, Boyd NL. Generation of a functional liver tissue mimic using adipose stromal vascular fraction cell-derived vasculatures. Sci Rep. 2013;3:2141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sato T, Vries RG, Snippert HJ, van de Wetering M, Barker N, Stange DE, van Es JH, Abo A, Kujala P, Peters PJ, Clevers H. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature. 2009;459(7244):262–5.

    Article  CAS  PubMed  Google Scholar 

  18. McCracken KW, Catá EM, Crawford CM, Sinagoga KL, Schumacher M, Rockich BE, Tsai YH, Mayhew CN, Spence JR, Zavros Y, Wells JM. Modelling human development and disease in pluripotent stem-cell-derived gastric organoids. Nature. 2014;516(7531):400–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Meinhardt A, Eberle D, Tazaki A, Ranga A, Niesche M, Wilsch-Bräuninger M, Stec A, Schackert G, Lutolf M, Tanaka EM. 3D reconstitution of the patterned neural tube from embryonic stem cells. Stem Cell Reports. 2014;3(6):987–99.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Suga H, Kadoshima T, Minaguchi M, Ohgushi M, Soen M, Nakano T, Takata N, Wataya T, Muguruma K, Miyoshi H, Yonemura S, Oiso Y, Sasai Y. Self-formation of functional adenohypophysis in three-dimensional culture. Nature. 2011;480(7375):57–62.

    Article  CAS  PubMed  Google Scholar 

  21. Freedman BS, Brooks CR, Lam AQ, Fu H, Morizane R, Agrawal V, Saad AF, Li MK, Hughes MR, Werff RV, Peters DT, Lu J, Baccei A, Siedlecki AM, Valerius MT, Musunuru K, McNagny KM, Steinman TI, Zhou J, Lerou PH, Bonventre JV. Modelling kidney disease with CRISPR-mutant kidney organoids derived from human pluripotent epiblast spheroids. Nat Commun. 2015;23(6):8715.

    Article  Google Scholar 

  22. Dye BR, Hill DR, Ferguson MA, Tsai YH, Nagy MS, Dyal R, Wells JM, Mayhew CN, Nattiv R, Klein OD, White ES, Deutsch GH, Spence JR. In vitro generation of human pluripotent stem cell derived lung organoids. Elife. 2015;24:4.

    Google Scholar 

  23. Lancaster MA, Renner M, Martin CA, Wenzel D, Bicknell LS, Hurles ME, Homfray T, Penninger JM, Jackson AP, Knoblich JA. Cerebral organoids model human brain development and microcephaly. Nature. 2013;501(7467):373–9.

    Article  CAS  PubMed  Google Scholar 

  24. Lozano R, Stevens L, Thompson BC, Gilmore KJ, Gorkin R, Stewart EM, Panhuis M, Romero-Ortega M, Wallace GG. 3D printing of layered brain-like structures using peptide modified gellan gum substrates. Biomaterials. 2015;67:264–73.

    Article  CAS  PubMed  Google Scholar 

  25. Pellegrini G, Traverso CE, Franzi AT, Zingirian M, Cancedda R, De Luca M. Long-term restoration of damaged corneal surfaces with autologous cultivated corneal epithelium. Lancet. 1997;349(9057):990–3.

    Article  CAS  PubMed  Google Scholar 

  26. Etheridge ML, Campbell SA, Erdman AG, Haynes CL, Wolf SM, McCullough J. The big picture on nanomedicine: the state of investigational and approved nanomedicine products. Nanomedicine. 2013;9(1):1–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Hamers-Casterman C, Atarhouch T, Muyldermans S, Robinson G, Hamers C, Songa EB, Bendahman N, Hamers R. Naturally occurring antibodies devoid of light chains. Nature. 1993;363(6428):446–8.

    Article  CAS  PubMed  Google Scholar 

  28. Zou X, Smith JA, Nguyen VK, Ren L, Luyten K, Muyldermans S, Bruggemann M. Expression of a dromedary heavy chain-only antibody and B cell development in the mouse. J Immunol. 2005;175(6):3769–79.

    Article  CAS  PubMed  Google Scholar 

  29. Janssens R, Dekker S, Hendriks RW, Panayotou G, van Remoortere A, San JK, Grosveld F, Drabek D. Generation of heavy-chain-only antibodies in mice. Proc Nat Acad Sci USA. 2006;103(41):15130–5.

    Google Scholar 

  30. Oral HB, Ozakin C, Akdis CA. Back to the future: antibody-based strategies for the treatment of infectious diseases. Mol Biotechnol. 2002;21:225–39.

    Article  CAS  PubMed  Google Scholar 

  31. Chan HT, Daniell H. Plant-made oral vaccines against human infectious diseases-Are we there yet? Plant Biotechnol J Rev. 2015; 13(8):1056–70. Epub 7 Sep 2015.

    Google Scholar 

  32. Rybicki EP. Plant-based vaccines against viruses. Virol J. 2014;3(11):205.

    Article  Google Scholar 

  33. Tokuhara D, Álvarez B, Mejima M, Hiroiwa T, Takahashi Y, Kurokawa S, Kuroda M, Oyama M, Kozuka-Hata H, Nochi T, Sagara H, Aladin F, Marcotte H, Frenken LG, Iturriza-Gómara M, Kiyono H, Hammarström L, Yuki Y. Rice-based oral antibody fragment prophylaxis and therapy against rotavirus infection. J Clin Invest. 2013;123(9):3829–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ito R, Takahashi T, Katano I, Ito M. Current advances in humanized mouse models. Cell Mol Immunol. 2012;9(3):208–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ena Ray Banerjee .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Ray Banerjee, E. (2016). Translational Research in Life Sciences. In: Perspectives in Translational Research in Life Sciences and Biomedicine. Springer, Singapore. https://doi.org/10.1007/978-981-10-0989-1_1

Download citation

Publish with us

Policies and ethics