Skip to main content

Phase-Field Modelling of Damage and Fracture—Convergence and Local Mesh Refinement

  • Chapter
  • First Online:

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 60))

Abstract

In this contribution, we outline the combination of a phase-field model of brittle fracture with adaptive spline-based approximations. The phase-field method provides a convenient way to model crack propagation without topological updates of the used discretisation as the crack is represented implicitly in terms of an order parameter field that can be interpreted as damage variable. For the accurate approximation of the order parameter field that may exhibit steep gradients, we utilise locally refined hierarchical B-splines in conjunction with Bézier extraction. The latter allows for the implementation of the approach in any standard finite element code. Moreover, standard procedures of adaptive finite element analysis for error estimation and marking of elements are directly applicable due to the strict use of an element viewpoint. Two different demonstration problems are considered. At first we examine the convergence properties of the phase-field approach and explain the influence of the domain size and the discretisation for the one-dimensional problem of a bar. Afterwards, results of the adaptive local refinement are compared with uniformly refined Lagrangian and spline-based discretisations. In the second example, the developed algorithms are applied to simulate crack propagation in a two-dimensional single-edge notched, shear loaded plate.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ambati, M., Gerasimov, T., De Lorenzis, L.: A review on phase-field models of brittle fracture and a new fast hybrid formulation. Comput. Mech. 55(2), 383–405 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Belytschko, T., Moës, N., Usui, S., Parimi, C.: Arbitrary discontinuities in finite elements. Int. J. Numer. Meth. Eng. 50, 993–1013 (2001)

    Article  MATH  Google Scholar 

  • Borden, M.J., Scott, M.A., Evans, J.A., Hughes, T.J.R.: Isogeometric finite element data structures based on Bézier extraction of NURBS. Int. J. Numer. Meth. Eng. 87(1–5), 15–47 (2011)

    Google Scholar 

  • Borden, M.J., Verhoosel, C.V., Scott, M.A., Hughes, T.J., Landis, C.M.: A phase-field description of dynamic brittle fracture. Comput. Methods Appl. Mech. Eng. 217–220, 77–95 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Bourdin, B., Francfort, G., Marigo, J.J.: Numerical experiments in revisited brittle fracture. J. Mech. Phys. Solid. 48, 797–826 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  • Chen, L.Q.: Phase-field models for microstructure evolution. Annu. Rev. Mater. Res. 32(1), 113–140 (2002)

    Article  Google Scholar 

  • Dörfel, M.R., Jüttler, B., Simeon, B.: Adaptive isogeometric analysis by local h-refinement with T-splines. Comput. Method. Appl. Mech. Eng. 199(5–8), 264–275 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Emmerich, H.: Advances of and by phase-field modelling in condensed-matter physics. Adv. Phys. 57(1), 1–87 (2008)

    Article  Google Scholar 

  • Evans, E.J., Scott, M.A., Li, X., Thomas, D.C.: Hierarchical T-splines: Analysis-suitability, Bézier extraction, and application as an adaptive basis for isogeometric analysis. Comput. Method. Appl. Mech. Eng. 284, 1–20 (2015)

    Article  MathSciNet  Google Scholar 

  • Forsey, D.R., Bartels, R.H.: Hierarchical B-spline refinement. SIGGRAPH Comput. Graph. 22(4), 205–212 (1988)

    Article  Google Scholar 

  • Francfort, G., Marigo, J.J.: Revisiting brittle fracture as an energy minimization problem. J. Mech. Phys. Solid. 46, 1319–1342 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  • Fries, T.P., Belytschko, T.: The extended/generalized finite element method: an overview of the method and its applications. Int. J. Numer. Meth. Engng. 84, 253–304 (2010)

    MathSciNet  MATH  Google Scholar 

  • Giannelli, C., Jüttler, B., Speleers, H.: THB-splines: the truncated basis for hierarchical splines. Comput. Aided Geom. D 29(7), 485–498 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Hennig, P., Müller. S., Kästner, M.: Bézier extraction and adaptive refinement of truncated hierarchical NURBS. Comput. Method. Appl. Mech. Eng. (2016). doi:10.1016/j.cma.2016.03.009

    Google Scholar 

  • Hughes, T.J.R., Cottrell, J.A., Bazilevs, Y.: Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput. Method. Appl. Mech. Eng. 194(39–41), 4135–4195 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • Jirásek, M.: Comparative study on finite elements with embedded discontinuities. Comput. Method. Appl. Mech. Eng. 188(1–3), 307–330 (2000)

    Article  MATH  Google Scholar 

  • Kästner, M., Müller, S., Hirsch, F., Pap, J.S., Jansen, I., Ulbricht, V.: XFEM modeling of interface failure in adhesively bonded fiber-reinforced polymers. Adv. Eng. Mater. 18, 417–426 (2016b)

    Google Scholar 

  • Kästner, M., Metsch, P., de Borst, R.: Isogeometric analysis of the cahn-hilliard equation - a convergence study. J. Comput. Phys. 305, 360–371 (2016a)

    Google Scholar 

  • Linder, C., Rosato, D., Miehe, C.: New finite elements with embedded strong discontinuities for the modeling of failure in electromechanical coupled solids. Comput. Method. Appl. Mech. Eng. 200, 141–161 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • May, S., Vignollet, J., de Borst, R.: A numerical assessment of phase-field models for brittle and cohesive fracture: \(\varGamma \)-convergence and stress oscillations. Eur. J. Mech. A-Solid. 52, 72–84 (2015)

    Google Scholar 

  • Miehe, C., Hofacker, M., Welschinger, F.: A phase field model for rate-independent crack propagation: robust algorithmic implementation based on operator splits. Comput. Method. Appl. Mech. Eng. 199(45–48), 2765–2778 (2010a)

    Article  MathSciNet  MATH  Google Scholar 

  • Miehe, C., Welschinger, F., Hofacker, M.: Thermodynamically consistent phase-field models of fracture: variational principles and multi-field FE implementations. Int. J. Numer. Meth. Eng. 83(10), 1273–1311 (2010b)

    Article  MathSciNet  MATH  Google Scholar 

  • Miehe, C., Schänzel, L.M., Ulmer, H.: Phase field modeling of fracture in multi-physics problems. Part I. Balance of crack surface and failure criteria for brittle crack propagation in thermo-elastic solids. Comput. Method. Appl. Mech. Eng. 294, 449–485 (2015)

    Google Scholar 

  • Moelans, N., Blanpain, B., Wollants, P.: An introduction to phase-field modeling of microstructure evolution. Calphad 32(2), 268–294 (2008)

    Article  Google Scholar 

  • Moës, N., Dolbow, J., Belytschko, T.: A finite element method for crack growth without remeshing. Int. J. Numer. Meth. Eng. 46, 131–150 (1999)

    Article  MATH  Google Scholar 

  • Ortiz, M., Leroy, Y., Needleman, A.: A finite element method for localized failure analysis. Comput. Method. Appl. Mech. Eng. 61(2), 189–214 (1987)

    Article  MATH  Google Scholar 

  • Peerlings, R., de Borst, R., Brekelmans, W., de Vree, J.: Gradient enhanced damage for quasi-brittle materials. Int. J. Numer. Method. Eng. 39(19), 3391–3403 (1996)

    Article  MATH  Google Scholar 

  • Piegl, L., Tiller, W.: The NURBS Book. Springer, Berlin (1996)

    MATH  Google Scholar 

  • Schillinger, D., Dede, L., Scott, M.A., Evans, J.A., Borden, M.J., Rank, E., Hughes, T.J.R.: An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Comput. Method. Appl. Mech. Eng. 249, 116–150 (2012)

    Article  MathSciNet  Google Scholar 

  • Scott, M.A., Li, X., Sederberg, T.W., Hughes, T.J.R.: Local refinement of analysis-suitable T-splines. Comput. Method. Appl. Mech. Eng. 213–216, 206–222 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Sederberg, T.W., Zheng, J., Bakenov, A., Nasri, A.: T-splines and T-NURCCs. ACM Trans. Graph 22(3), 477–484 (2003)

    Article  Google Scholar 

  • Sederberg, T.W., Cardon, D.L., Finnigan, G.T., North, N.S., Zheng, J., Lyche, T.: T-spline simplification and local refinement. ACM Trans. Graph 23(3), 276–283 (2004)

    Article  Google Scholar 

  • Simo, J.C., Oliver, J., Armero, F.: An analysis of strong discontinuities induced by strain-softening in rate-independent inelastic solids. Comput. Mech. 12(5), 277–296 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  • Steinbach, I.: Phase-field models in materials science. Model. Simul. Mater. Sci. 17(7), 073001 (2009)

    Google Scholar 

  • Wells, G.N., Sluys, L.J.: A new method for modelling cohesive cracks using finite elements. Int. J. Numer. Meth. Eng. 50(12), 2667–2682 (2001)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge support by the Deutsche Forschungsgemeinschaft (DFG) in the Priority Programme 1748 “Reliable simulation techniques in solid mechanics. Development of non-standard discretization methods, mechanical and mathematical analysis” under the project KA3309/3-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Kästner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Kästner, M., Hennig, P., Linse, T., Ulbricht, V. (2016). Phase-Field Modelling of Damage and Fracture—Convergence and Local Mesh Refinement. In: Naumenko, K., Aßmus, M. (eds) Advanced Methods of Continuum Mechanics for Materials and Structures. Advanced Structured Materials, vol 60. Springer, Singapore. https://doi.org/10.1007/978-981-10-0959-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-0959-4_17

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-0958-7

  • Online ISBN: 978-981-10-0959-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics